Escuela Especializada

en Ingenieria

I’ T'C. A ws FEFPADRDE

DEPARTAMENTO DE INGENIERIA EN COMPUTA;ICN
TECNICO EN INGENIERIA DE SISTEMAS INFORMATICOS

PRIMERA EDICION
SANTA TECLA, JUNIO DEL 2010

DOCENTE
INSTRUCTOR
ALUMN@
SECCION
CICLO

M=

- (!

Escuela Especializada =
en Ingenieria T

ITCA wzrerane | Reglamento del Centro de Computo

1. Cada estudiante es responsable del uso adecuado del mobiliario y equipo instalado en el
Centro de Computo.

2. Antes de iniciar su practica verifique que su equipo esté completo y en buen estado.

3. Comunicar inmediatamente al docente o instructor sobre posibles fallas en el mobiliario y
equipo.

4. Presentarse puntualmente al Centro de Cémputo con su respectivo manual de practicas y
su diskette de trabajo.

5. Portar su carné de identificacién, talonario u otro documento que lo acredite como
estudiante activo del ITCA.

6. Ingresar al Centro de cdmputo Unicamente cuando su instructor esté presente.

Se prohibe totalmente la instalacion o desinstalacion de software, asi como las
modificaciones en la configuracién del equipo.

Se prohibe acceder al Internet durante la hora de practica.

Se prohibe fumar y/o ingresar alimentos o bebidas en el Centro de Cémputo.
10. Evitar el uso de aparatos de sonido, celulares y beepers durante la practica.
11. Se prohibe reproducir CD ‘s de musica en el Centro de Cémputo.
12. No se permiten los juegos de computadoras, ver pornografia ni usar salas de chat.
13. Se prohibe ingresar partes o accesorios de computadoras.
14. No botar o esparcir basura.
15. No manipular los controles del aire acondicionado.
16. No se permite levantarse innecesariamente durante la practica
17. Se prohibe maquillarse o peinarse dentro del Centro de Computo.
18. Retirarse de la practica en el momento que el instructor le indique.

19. Antes de retirarse del Centro de Computo, revise su area de trabajo, verificando que el
equipo quede apagado.

20. El instructor no se hara responsable de objetos olvidados en el Centro de Computo.

21. El incumplimiento de las reglas anteriores conllevara a la suspensién temporal o la
retribucidon monetaria segun el dafio causado.

Tec. En Ingenieria en Sistemas

Escuela Especializada

en Ingenieria

ITCA vz Ferane Contenido

Contenido Pagina
Clase N° 1 Conceptos Generales Aplicaciones Cliente-Servidor. 5
Guia Practica N° 1 Instalacion del IDE (Entorno de Desarrollo Integrado) 9
y Aplicaciones basicas con Java.
Clase N° 2 Elementos basicos de lenguajes de programacion en ambiente 16
cliente/servidor
Guia Practica N° 2 Estructuras de control de JAVA: if, swich, for, while. 22
Clase N° 3 Clases, Atributos , Métodos y Manejo de Excepciones. 26
Guia Practica N° 3 Clases, Atributos , Métodos y Manejo de Excepciones. 35
Clase N° 4 Introduccidn a la interfaz Grafica y Modelo de Eventos 38
Guia Practica N° 4 Esquema de una aplicaciéon orientada a eventos 41
Clase N° 5 Desarrollo de Interfaces. 44
Guia Practica N° 5 Desarrollo de Interfaces. 47
Clase N° 6 Introduccién a la Tecnologia JSP 49
Guia Practica N° 6 Introduccidon a Java Server Pages 55
Clase N° 7 JSP con bases de datos 61
Guia Practica N° 7 JSP con Bases de Datos 66
Clase N° 8 Manejo de sesiones y cookies con JSP 72
Guia Practica N° 8 Manejo de sesiones y cookies con JSP 80
Clase N° 9 Introduccidn a Servlets 85
Guia Practica N° 9 Servlets Basico 94
Clase N° 10 Acceso a Base de Datos con Java Servlets 103
Guia Practica N° 10 Bases de Datos con Java Serviets (Uso de 108
Excepciones)
Clase N° 11 Utilidades para programar en JAVA Servlets 115
Guia Practica N° 11 Graficos en Aplicaciones de Java 121

Aplicaciones Cliente Servidor Pagina 3.

Tec. En Ingenieria en Sistemas

Escuela Especializada A
en Ingenieria STy
H d E I =7 n [- L J}

ITCA vz Ferane Sistema de Evaluacio | =f

Aplicaciones Cliente Servidor

DEPARTAMENTO DE INGENIERIA EN COMPUTACION

ACTIVIDAD PONDERACION FECHA CONTENIDO

EVALUACION TEORICA 1 30% Semana 4 Unidad 1
EVALUACION TEORICA 2 35% Semana 8 Unidad 2
EVALUACION TEORICA FINAL 35% Semana 14 Uniadad 3
TOTAL TEORIA (40%) 100%
EVALUACION PRACTICA 1 15% Semana 4 Unidad 1
EVALUACION PRACTICA 2 15% Semana 8 Unidad 2
EVALUACION PRACTICA 3 20% Semsna 14 Unidad 3
PROYECTO 50% Semana 16 Proyecto
TOTAL PRACTICA (60%) 100%

Aplicaciones Cliente Servidor Pagina 4.

Tec. En Ingenieria en Sistemas

Escuela Especializada y 2
en Ingenieria F o LN

- =

I'TCA v Ferane Clase N° 1 -/

Conceptos Generales Aplicaciones
Cliente-Servidor.

OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Definir conceptos de aplicaciones cliente servidor.
e Exponer ventajas y desventajas de aplicaciones clientes servidor.
o Identificar diferentes tecnologias de Java como lenguaje de aplicaciones cliente servidor.

DESARROLLO

CLIENTE SERVIDOR.

Modelo Cliente - servidor: divide las aplicaciones comunicantes en dos categorias,
dependiendo de si la aplicacidon se queda en espera de conexiones (servidor) o las
inicia (cliente).

En general, una aplicacidon que inicia una comunicacion con otra se la califica como
cliente. Los usuarios finales invocan aplicaciones cliente cuando utilizan un servicio de
red. Cada vez que se ejecuta una aplicacion cliente, esta contacta con el servidor, le
envia una solicitud de servicio y espera la respuesta o resultados del servicio. El
proceso cliente es el encargado de llevar a cabo la interaccion con el usuario y de
mostrar los resultados de las peticiones de servicio. En la mayoria de las ocasiones los
clientes son mas faciles de disefiar que los servidores, y no suelen precisar privilegios
especiales del sistema para poder funcionar.

Servidor es un programa que espera peticiones de servicio por parte de un cliente. El
servidor recibe la peticion del cliente, ejecuta el servicio solicitado y retorna los
resultados al cliente. No existe una interaccion directa entre el usuario y el servidor, de
esto ya se encarga la aplicaciéon cliente.

/,/—;S INTERMET - TCE/IP /_ B ;;»

/ & Protocolo HTTP /%.?o
/ Qf};\vy
|" . /
/f-'c»o &
¢
P

EEESSEE8E3,]

Serwidor HTTP

=n algin lugar Chente de HTTP
del mundo e Areaidn

Aplicaciones Cliente Servidor Pagina 5.

Tec. En Ingenieria en Sistemas

Las aplicaciones emplean el modelo cliente-servidor donde las funciones como, los
inicios de sesidn y el almacenamiento de datos pueden residir en sistemas diferentes.

Caracteristicas de un cliente
e Es quien inicia solicitudes o peticiones, tienen por tanto un papel activo en la
comunicacién (dispositivo maestro o amo).
e Espera y recibe las respuestas del servidor.
e Por lo general, puede conectase a varios servidores a la vez.
e Normalmente interactia directamente con los usuarios finales mediante una
interfaz grafica de usuario(GUI).

Caracteristicas de un servidor

e Al iniciarse esperan a que lleguen las solicitudes de los clientes, desempefian
entonces un papel pasivo en la comunicacion (dispositivo esclavo).

e Tras la recepcion de una solicitud, la procesan y luego envian la respuesta al
cliente.

e Por lo general, aceptan conexiones desde un gran numero de clientes (en
ciertos casos el nimero maximo de peticiones puede estar limitado).

e No es frecuente que interactien directamente con los usuarios finales.

Ventajas

Centralizacion del control: Los accesos, recursos y la integridad de los datos son
controlados por el servidor de forma que un programa cliente defectuoso o no
autorizado no pueda dafar el sistema. Esta centralizaciéon también facilita la tarea de
poner al dia datos u otros recursos.

Escalabilidad: Se puede aumentar la capacidad de clientes y servidores por separado.
Cualquier elemento puede ser aumentado (o mejorado) en cualquier momento, o se
pueden afiadir nuevos nodos a la red (clientes y/o servidores).

Facil mantenimiento: Al estar distribuidas las funciones y responsabilidades entre
varios ordenadores independientes, es posible reemplazar, reparar, actualizar, o
incluso trasladar un servidor, mientras que sus clientes no se veran afectados por ese
cambio (o se afectaran minimamente). Esta independencia de los cambios también se
conoce como encapsulacién.

Desventajas

Congestion del trafico: cuando una gran cantidad de clientes envian peticiones
simultaneas al mismo servidor, puede ser que cause muchos problemas para éste (a
mayor numero de clientes, mas problemas para el servidor).

Centralizacion de recursos: cuando un servidor esta fuera de linea, apagado o ha
tenido algun problema para el inicio, las peticiones de los clientes no pueden ser
satisfechas.

El software y el hardware: son generalmente muy determinantes. Un hardware
regular de un ordenador personal puede no poder servir a cierta cantidad de clientes.
Normalmente se necesita software y hardware especifico, sobre todo en el lado del
servidor, para satisfacer el trabajo. Por supuesto, esto aumentara el coste.

Aplicaciones Cliente Servidor Pagina 6.

Tec. En Ingenieria en Sistemas

éQué es JAVA?

Java es un lenguaje de programacién de Alto nivel independiente de la plataforma. Que
se desarrolla en principios para la creacion de aplicaciones que sean independientes del
hardware en que se ejecuta y que poseen pocos recursos. Java elimina todas aquellas
instrucciones y funciones imprescindibles que en muchas ocasiones son causantes de
errores logrando mantener todas las caracteristicas de un lenguaje de alto nivel.

En 1995 es lanzado como una novedad para la creacidén de aplicaciones pero no se
gueda como un lenguaje para la creacion de aplicaciones de escritorio, gracias al auge
del Internet se descubre otra caracteristica que marco el rumbo del posicionamiento de
java como un lenguaje para la creacién de contenidos para la Web y es asi que para
1996 a través de Netscape 2.0, y la Web ya no volvid a ser lo mismo.

Uno de los mensajes comerciales de Java fue “Escribir una vez, funcionar en cualquier
lugar”. En teoria el programa solo debe codificarse una vez, y debe funcionar en
cualquier maquina con soporte Java para Windows y Unix, mientras que Apple controla
la versién Macintosh. Originalmente.

Maquina Virtual de Java

Uno de los acronimos mas empleados en Java es JVM, que procede del término en
inglés Java Virtual Machine (Maquina Virtual Java). Entender que tiene Java de
especial los programas Java no hablan directamente a la computadora, sino que lo
hacen a la JVM, que a su vez se encarga de comunicarse con aquélla. La JVM es como
un traductor entre el cédigo Java y la computadora, la razén por la cual dicho cddigo
es considerado como un cédigo interpretado en lugar compilado(es decir especifico de
una maquina). La JVM es un programa especifico que se ejecuta en la computadora.
Su Unico propédsito es tomar programas Java y convencer a la computadora de que lo
que esta ejecutando es algo que se a desarrollado especificamente para ella.

Aplicacion
Java

Maquina
Virtual
Windows

Maquina
Virtual
Macintosh

Maquina
Virtual
UNIX

PC Mac UNIX

En conclusion Java puede ejecutarse en cualquier hardware, razén por la cual existe
una Maquina Virtual Java, o JVM funcionando en el.

Aplicaciones Cliente Servidor Pagina 7.

Tec. En Ingenieria en Sistemas

Caracteristicas de Java
e Java es simple.
Destaca por su robustez.
Es interpretado.
Java es distribuido.
Ante todo es portable.
Con una arquitectura independiente (neutral).
Un lenguaje orientado a objetos.
Ademas, es dinamico.
Su seguridad es muy alta.
Permite actividades simultaneas.

Tecnologias aplicadas de Java:

J2SE (Java 2 Standard Edition): Es una coleccion de Applets del lenguaje de
programacién Java Utiles para muchos programas de la Plataforma Java. La Plataforma
Java 2, Enterprise Edition incluye todas las clases en el Java SE, ademas de algunas de
las cuales son Utiles para programas que se ejecutan en servidores sobre Estaciones
de Trabajo.

J2ME (Java 2 Micro Edition): Es una coleccién de Applets de Java para el desarrollo de
software para dispositivos de recursos limitados, como PDA, teléfonos moéviles y otros
aparatos de consumo.

J2EE (Java 2 Enterprise Edition): Es una plataforma de programacién para desarrollar
y ejecutar software de aplicaciones en Java con arquitectura de N niveles distribuidos,
basandose ampliamente en componentes de software modulares ejecutandose sobre
un servidor de aplicaciones.

Tarea:
Investigar y hacer un resumen con todas las caracteristicas de java.
[J Hacer un cuadro comparativo con las tecnologias aplicadas de java.

Aplicaciones Cliente Servidor Pagina 8.

Tec. En Ingenieria en Sistemas

Escuela Especializada =
en Ingenieria S)
[~ L=l

@.

ITCA v rerane Guia Practica No 1 =/

Instalacion del IDE (Entorno de Desarrollo Integrado) y
Aplicaciones basicas con Java.

OBJETIVOS

Al finalizar la practica, el estudiante sera capaz de:
e Instalar y configurar el entorno de desarrollo de aplicaciones en Java.
e Utilizar los componentes basicos del IDE de programacion para la creaciéon de
aplicaciones en Java.
e Crear programas basicos con Java.

PROCEDIMIENTO

Un entorno de desarrollo integrado o en inglés Integrated Development Environment (IDE)
es un entorno de programacion que ha sido empaquetado como un programa de aplicacion,
es decir, consiste en un editor de codigo, un compilador, un depurador y un constructor de
interfaz grafica GUI (Interfaz Grafica de Usuario) e interprete.

Para el desarrollo de nuestras aplicaciones usaremos el NETBANS un IDE con el que se
puede trabajar Java de una forma muy sencilla.

El NetBeans IDE es un entorno de desarrollo, una herramienta para programadores pensada
para escribir, compilar, depurar y ejecutar programas. Esta escrito en Java, pero puede
servir para cualquier otro lenguaje de programacion. El IDE NetBeans es un producto libre y
gratuito sin restricciones de uso.

Pasos para la instalacion del NetBeans

Antes de instalar el NetBeans necesitamos tener instalado el JSDK (Java Software
Developmnet Kit).

[(
Para instalarlo daremos doble clic en el icono siguiente =

welcome to the Installation wizard for
Java(TiM) SE Development Kit 6 Update 2

Aparecera la pantalla de bienvenida del
instalador como la que se muestra a
continuacion.

JawalTH) SE Development Kit & Update 2 Setup is preparing
the Installation Wizard which will guide you through the:
program setup process. Please wait

| Cancel j

Aplicaciones Cliente Servidor Pagina 9.

Tec. En Ingenieria en Sistemas

iw Java(TM) SE Development Kit 6 Update 2 - License

((License Agreement

= i Sun . . ,
Java Please read the following license agreement carefully, @5{} Despues de un |nstante de espera aparecera

_ una ventana con la licencia la cual debemos
Sun Microsystems, Inc. Binary Code License ALgreement A

~ | aceptar dando clic en Accept.

for the JAVL 3E DEVELOPMENT KIT (JDE), VERSION A

SUN MICROSYITEM3, INC. ("3UN") I3 WILLING TCO LICENZE THE
SOFTWARE IDENTIFIED BELOW TO YOU OWLY UPCN THE CONDITICH
THAT ¥OU ACCEPT ALL OF THE TERMZ CCHNTAINED IN THIZ
BINARY CODE LICEWNSE AGREEMENT IND SUPPLEMENTAL LICENSE
TERMS (COLLECTIVELY "AGREEMENT™).O FPLEASE READ THE
AGREEMENT CAREFULLY.O EY DOWNLOADING OR INSTALLIMG THIS
SOFTWARE, YOU ACCEFT THE TERM3 OF THE AGREEMENT.
INDICATE ACCEPTANCE BY SELECTING THE "ACCEPT™ BUTTON AT
THE BOTTOM OF THE AGREEMENT. IF TOU ARE NOT WILLING TO
BEE BOUND BY ALL THE TERM3, SELECT THE "DECLINE" BUTTON

P

[E:2

i Java{TM) SE Development Kit 6 Update 2 - Custom Setup

Custom Setup

Y
Select the program features you want installed, @\5””

Select optional features ta install from the list below, You can change your choice of features after
installation by using the AddiRemove Programs utiity in the Control Panel

Después de aceptar la licencia aparecera otra T
ventana que indica los componentes que se =18 : Toos | dae(rn) SE Gevelopment kit &
R , . ., , 3 Dernos and Samples Update 2, |nc|_ud\n_g private JRE €
instalaran y la direccion donde lo hara, fehnE i 2 Ted o
solamente presionaremos Next (Si lo desea Fublic RE

puede cambiar la direccion dando clic en

Change).

Java DB

Install ta!

CiiArchivos de programalJavaijdkl 6.0 02)

[< Back H Mext =] [Cancel]

i Java(TM) SE Development Kit 6 Update 2 - Progress E],;_'
Installing

‘
S progran Faiihures youselseéad s beiig frefaib. @ Sun

Flease wait while the Instal Wizard installs Java(TM) SE Develapment Kit 6
Updats 2, This may take several minutes.

Status: Al instante aparecera una ventana
que indica el estado de Ia
instalacion, esperaremos unos
instantes para que termine de
instalar todos los componentes.

[|

i Java(TM) SE Development Kit 6 Uipdate 2 - Complete &‘

Wizard Completed

The Install Wizard has successfully installed Java(TM) SE
Development Kit & Update 2. Click Finish to exit the wizard.

Luego solo nos resta dar clic en Finish
[0 Show the reade e como lo muestra en la imagen.

Aplicaciones Cliente Servidor Pagina 10.

Tec. En Ingenieria en Sistemas

Ahora que ya instalamos el JSDK podemos instalar el NetBeans para ello haremos lo

siguiente:

%,) netbeans, exe
De doble clic en el instalador del NetBeans

Aparecera una ventana indicando que se
esta Configurando el Instalador como la
siguiente:

EBX

® NetBeans IDE Installer

w

Installer

The installer wil install the MetBeans IDE with the Follawing packs and runtimes
Click, Customize ko select the packs and runtimes to install.

Base IDE

Java SE

Web & Java EE
Mobilty

UL

SO8

Rubry

cloH+

Runtimes
GlassFish V2 UR2
Open ESB v2

% NetBeansine 1 Y

.

Inskallation Size: 577.9 MB

Aparecera la licencia del NetBeans la cual
debemos aceptar dando clic en I accept the
terms... y se activa el botédn Next.

‘ HMetBeans IDE Installer

NetBeans IDE 6.1 Installation
Choose the instalation folder and JDK™ for the NetBeans IDE.
Install the MetBeans IDE ta:
|csyarchivas de programalNetfesns 6. 1] H Erowse...]
JOK™ for the NetBeans IDE:
|citrchivos d programe Javaljdkl 6.0 v\[Browse...]
[<gack | [met>] [concel]

" MetBeans IDE Installer

Configuring the installer ..

La ventana siguiente es la pantalla principal
del instalador donde se muestra la version que
estamos instalando del NetBeans vy las
tecnologias que podemos trabajar con el en
esta pantalla debemos dar clic en Next.

, MetBeans IDE Installer

IZJIE@‘
Y 5 NotBaans ¢ |

License Agreement

Please read the following licanss agreement carsfuly.

METBEAMS IDE 6.1 {"Product")

e

Please review the complete list of open-source licenses
governing software included in the Product. They can be
Found in the THIRDPARTYLICENSE txt file. Sun slects to use
only the GNU Lesser General Publc License version 2,1
{LGPL}/GNU General Public License version 2 (GPL) For any
software where a choice of LGPL/GPL license versions are
made available with the language indicating that

LGPLYZ. 1{PLVZ or any later version may be used, or where a
choice of which version of the LGPLGPL is applied is
unspeciied.

Please review the list of libraries and icenses provided
Far use, This license file contains five distinct licenses.

Unless specified below, the use of NetBeans IDE 6.1 and
components From the GlassFish runtims are qoverned by the

T accept the terms n the license agreement

[< Back][Nest > | [Cancel

Luego nos mostrara la ruta donde se instalara
el NetBeans dejaremos las direcciones que se
muestran en la pantalla y demos clic en Next,
(Si lo desea puede cambiar la ruta de
instalacion)

Aplicaciones Cliente Servidor

Pagina 11.

Tec. En Ingenieria en Sistemas

En ocasiones aparecera una alerta

seguridad la que preguntara si

bloquear Java[TM] Platform SE binary para no
tener problemas posteriores daremos clic en
Desbloquear.

‘ NetBeans IDE Installer

BIE]FS:Q|
¥ NetBeans e

GlassFish ¥2 URZ Installation
Choose the installion Fakder and server propertics.

Instal GlassFish to:

|c:\rchivas de programa)glassfish-v2urz \[Browse, .,]

DK™ far GlassFish application server;

cr\aretivos de programaiJavajokt 6.0 v | [eramse. . |

HITR Port: 5080]
HTTPS Port: [m181 '1
Adrin Port; 4548]

Luego nos mostrara la siguiente pantalla
donde daremos clic en Install

' NetBeans IDE Installer

D\E@
I NetBeans o

Installation

Please wait while the installer installs NetBeans IDE and runtimes.
Installing GlassFish ¥z UR2...

Extracting C:\archivos de programalglassfish-v2ur2libiwebservices-rt_zh_Tw.jar.pack.gz

Cancel

Durante la instalacion podria aparecer otra
Alerta de seguridad simplemente has clic
en Desbloquear si esto sucede. Al final
daremos clic en Finish.

de
deseamos

%= Alerta de seguridad de Windows

Para apudar a proteger gu equipo, Firewall de Windows
blogued algunas caracterislicas de este programa.

iDesea este bl do?
& Hombre: Java[TM] Platform SE binary

Eabiricante: Sun Microsystems, Inc.

Egntinuarhlﬂquen][Diesbloquear] [Eleguntarmamésadelante

Firewall de Windows bloqued este programa para que no acepte conexiones de
Internet o de una red. Puede desblaguearlo si reconoce este programa o confia en el
emisor. 2Cusndo debo desbloquear un programa?

A continuacion nos pedira la configuracion de los

= - parametros del servidor Web simplemente
(e o] dejaremos las opciones tal como estédn vy

presionamos Next.

W NetBeans IDE Installer

Summary & -
7 & NetBeans g |

Click Install to start the installation.

MetBeans IDE Installation Folder:
Ci\Archivos de programaibetBeans 6,1

GlassFish w2 LRZ Installation Folder:
Ci\Archivos de programalglassfish-v2urz

Open ESE w2 will be installed to the GlassFish Folder.

Total Installation Size:
577.9 MB

< Back

| Fanstai § [cCancel

Aparecera una ventana que nos muestra el
estado de la instalacion y debemos esperar ya
que esto tomara un par de minutos.

'NelBeﬂns IDE Installer

EE®

&) NetBeans IDE ;1

Setup Complete
Click Finish to finish the NetBeans IDE setup,

Installation completed successfully.

Register the NetBeans IDE and GlassFish to get the following benefits:

Notification of new versions, patches and updates

Spedial offers on Sun developer products, services and kraining

Access b early releases and documentation

pbiliey to track and manage your registsred products on ths SunConnection Inventory site

Registration is FREE.

Register the MetBeans IDE and GlassFish after Finishing the nstaller

Aplicaciones Cliente Servidor

Pagina 12.

Tec. En Ingenieria en Sistemas

Terminada la instalacion ya estamos preparados para utilizar el NetBeans al ejecutar la
aplicacidon que se encuentra en inicio > todos los programas >NetBeans>NetBeans
IDE 6.1 nos aparece esta pantalla que es la ventana principal del IDE.

Descrpcion de la ventana del IDE.

® HetBeans IDE 6.1
Edit View MNavigste Source Refactor Bulld Run Profile Versioning Tools Window Help
o | R BRg oy SO .
L T8 b EB-G
Projects 41 x Files [:Services wva | |8 amarjova x| [9] Sumadjava x| (91 Matke java*
G Rl N EE-B ARSR e @
=idefault package:> 1= T
: [@ constructor java LE
Pija java : aie B SHD AL e
] B Liamar java 3
N 1 Btadre java 4
4 {@1 Nieta java c |
18] sumajava 60/
b i@.”operaciones.]ava ‘ = o _
(53 Test Packages 8 author coo: Ha
B Lbraries il /
i g M| 10 public class Hieta extends Hijal
Nieta - Navigator @ x| 110 public static void mein [String(]args)!
"M;ﬁ!sers'v‘lev\; "'vr 12 System. ont.println{edad)
(2@ Newnrim 1 13 System, out.println(zlturs) :
o) maiSinel] aras) 14 Hija.abrazoll:
15 color pelo=MRosado';
16 System.out.printin{celor pelc):
17 ¥ 1
g b
5 15 =
& (O8] 8 %= ez |ms
:Dutput - Prueba (run-single) s x
Inp, [101ES - o ""_
D> deps-jar: |
| |Cowpiling 1 source file to C:\Documents and Settings\coordinader\Mis documsntos\MetBeansProjects\Prushatbuildiclasses
coupile-single:
| Tun-sing.
:)ﬂ)anadn |
6 |BUILD SUCCESSFUL itotal time: 0 seconds) b |
,
1. Barra de Mendu.
2. Barra de Herramientas
4 . . . s . ~
3. Area de Trabajo (codificacion y disefo).
4. Navegador de proyectos.
5. Navegador de Elementos de la Clase.
6. Salidas o resultados.

Para la creacion de aplicaciones con el IDE lo primero que crearemos sera un proyecto el cual
nos servird para almacenar todas las clases y elementos que creemos para nuestra aplicaron en
Java. Esto lo hacemos desde File>New Project.... o0 damos clic en el icono en la barra de
herramientas. Lo que haremos al hacer cualquiera de estas acciones sera seleccionar el tipo de
proyecto (en nuestro caso sera Categories:Java; projects:Java Application) definiremos el nombre y la
ubicacion del proyecto. Hecho esto ya podemos empezar a crear las clases que seran la base de
nuestros programas.

Para Crear una clase lo haremos desde File>New File.... O en el icono de la barra de menu al
igual que el proyecto seleccionamos el tipo de archivo (en nuestro caso serd Categories:Java; File
Types:Java Class) y definimos el nombre. Terminado este proceso en el area de trabajo aparecera
una plantilla de una clase la cual solo nos queda definir los cddigos necesarios para su
funcionamiento.

Primer programa en Java.

Crearemos una clase denominada HolaMundo con la cual se muestra un mensaje en pantalla, el
cédigo de la clase sera el siguiente.

Aplicaciones Cliente Servidor Pagina 13.

Tec. En Ingenieria en Sistemas

HolaMundo

public class HolaMundo {

public static void main(String[J]args){
System.out.print("Hola Mundo");

b

>

Lo Unico que mostrara este programa es el mensaje “Hola Mundo”. Pero para hacer esto primero
hay que compilar y después ejecutar la clase como se hace esto lo podemos hacer de dos
maneras ya sea por medio de la barra de menu o con un metodomas facil que es por atajos del
teclado.

Proceso Barra de Menl Atajo de Teclado
Compilar Build> Compile “nombre de la clase.java” F9
Ejecutar Run > Run File > Run “nombre de la clase.java” Mayus+F6
Variables.

public class Variables {

public static void main(String[Jargs){
int datol = 10;
double dato2 = 15.31213;
float dato3 =1.2F;
char dato4 = 'c';
boolean dato5 = true;
String dato6 = "Desarrollo de aplicaciones";
short dato7=24;
long dato8 = 45441557864L;

System.out.printIn("Tipo de dato int valor: "+datol);
System.out.printIn("Tipo de dato double valor: "+dato2);
System.out.printin("Tipo de dato float valor: "+dato3);
System.out.printIn("Tipo de dato char valor: "+dato4);
System.out.printIn("Tipo de dato boolean valor: "+dato5);
System.out.printIn("Tipo de dato String valor: "+dato6);
System.out.printin("Tipo de dato short valor: "+dato7);
System.out.printin("Tipo de dato long valor: "+dato8);

b
bs

Variables2

public class Variables2 {
public static void main(String[]args){
int datol = 10;
int dato2 = 15;
String msg="La Suma es: ";
System.out.printin(msg+(datol+dato2));

b
b

Aplicaciones Cliente Servidor Pagina 14.

Tec. En Ingenieria en Sistemas

Operaciones

public class Operaciones {
public static void main(String[Jlargs){

int a=10,b=3;
System.out.printin("la suma de a + b = "+(a+b));// 13
System.out.printin("la resta de a - b = "+(a-b));// 7
System.out.printIn("la multiplicacion de a * b = "+(a*b));// 30
System.out.printin("la division de a /b = "+(a/b)); // 3
System.out.printin("el modulo de a % b = "+(a%b)); // 1
System.out.printin(" de a > b = "+(a>b));// true
System.out.printin(" de a < b = "+(a<b));// false
System.out.printin(" de a == b = "+(a==b));// false
System.out.printin(" de a !'= b = "+(al=b));// true
System.out.printin(" de (a > b) && (a<b) = "+((a>b)&& (a<b)));// false
System.out.printin(" de (a > b) || (a<b) = "+((a>b)|| (a<b))); // true
System.out.printin(" de (a > b) && !(a<b) = "+((a>b)]|| !(a<b))); // true
System.out.printin(" de a++ ="+ a++ +"a = "+a); // 11
System.out.printin(" de ++b = "+ ++b); // 4
b

bs

Ejercicios.

e Crear una clase que imprima la suma de 2 nimeros decimales.

e Crear una clase que calcule el area de un rectangulo.

e Crear una clase que calcule la hipotenusa de un triangulo (investigue las funciones para
sacar raiz cuadradas y potencias).

Sea creativo para presentar los resultados, utilicé todas las variables y operadores que considere
necesarios.

Aplicaciones Cliente Servidor Pagina 15.

Tec. En Ingenieria en Sistemas

Escuela Especializada P —n)
en Ingenieria El‘-%?_)}l

. o B ”
% FEPANE =
ITCAw Clase N° 2 -

Elementos basicos de lenguajes
de programacion en ambiente cliente/servidor.

OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Identificar elementos basicos de lenguaje Java para la programacion cliente
servidor.
e Definir el uso de cada elemento y su aplicacion en los programas creado con Java.

DESARROLLO

Para todos los que los que ya hemos trabajado con un lenguaje de programacion debemos saber
que hay elementos basicos, para poder trabajar con dicho lenguaje y estos se apagan a
estandares nos permiten tener un mayor control y orden a al hora de utilizar estos elementos
para la programacion. En este apartado conoceremos y estudiaremos estos electos y el
tratamiento que Java hace particularmente a estos, dichos elementos son:

Comentarios
Identificadores
Palabras reservadas
Variables

Literales
Operadores

COMENTARIOS.

Nos permiten introducir notas y aclaraciones en el momento de programar para resaltar alguna
accion que se realizan en ciertas partes del cddigo, esto se hace para complementar la
documentacién interna de las aplicaciones creadas en Java, ademas es una ayuda para la
modificacion y estudio futuro de las aplicaciones.

El lenguaje nos permite tres tipos de comentarios los cuales son:

e Comentarios de una sola linea //
e Comentarios de bloque /* */
e Comentarios de Documentacion /** */

Ejemplo

import java.util.*;

/** Un programa Java simple.
* Imprime un mensaje y la fecha.
* @author ITCA
* @version 1
*/
public class EjemploComentarios {

/** Inicio de la documentacion
* @param args Array de Strings.
* @return No devuelve ningun valor.
* @throws No dispara ninguna excepcion.
*/
public static void main(String [] args) {
System.out.printin("Hola a todos");
System.out.printin(new Date());

Aplicaciones Cliente Servidor Pagina 16.

Tec. En Ingenieria en Sistemas

Ademas de los comentarios de documentaciéon encontramos algunas palabras o tags que sirven
para definir una mejor documentacion

Tipo de Formato Descripcion
tag
Todos @see Permite crear una referencia a la documentacion de otra clase o
método.

Clases @version Comentario con datos indicativos del nimero de version.
Clases @author Nombre del autor.
Clases @since Fecha desde la que esta presente la clase.
Métodos @param Parametros que recibe el método.
Métodos @return Significado del dato devuelto por el método
Métodos @throws Comentario sobre las excepciones que lanza.
Métodos @deprecated Indicacion de que el método es obsoleto.
IDENTIFICADORES

Son elementos que nos permiten nombrar variables, funciones, clases y objetos; cualquier cosa
que el programador necesite identificar o usar en una aplicacion en Java. Se definen como los
nombres dados a cada elemento que utilicemos dentro de la aplicacién.
Estos se deben formar siguiendo algunas reglas las cuales son:

1- Comienzan con una letra (mayuscula o minuscula), un guién bajo (_) o un simbolo de

ddlar ($).

2- Los caracteres siguientes pueden ser letras o digitos

3- No se deben dejar espacios en blanco

4- No existe una longitud maxima de caracteres.

Serian identificadores validos:

identificador
nombre_usuario
Nombre_apellido
_variable_del_sistema
$transaccion

y Su uso seria, por ejemplo:

int contador_principal;
char _lista_de_ficheros;
float $cantidad_en_dolares;

PALABRAS RESERVADAS

Son aquellas que tienen un uso especial dentro del lenguaje e identifican elementos que son
generales del lenguaje y no pueden ser utilizadas como identificadores para los objetos,
variables y otros objetos que nosotros creemos Estas palabras son:

abstract , boolean, break, byte, bytevalue, case, catch, char, class, const, continue,
default, do,double, else, extends, false, final, finally, float, for, goto, if, implements,
import, instanceof, int, interface, long, native, new, null, package, private, potected,
public, return, short, static, super, switch, synchronized, this, threadsafe, throw,
transient, true, try, void, while.

Aplicaciones Cliente Servidor Pagina 17.

Tec. En Ingenieria en Sistemas

VARIABLES

Son elementos imprescindibles dentro de la programacion y las podemos definir como posiciones
de memoria, que almacenan un dato. Para utilizar una variable esta debe primero haberse
declarado tomando en cuenta ciertos estandares los cuales define que la debe de poseer un tipo
de dato, el identificador de dicha variable y el valor que ha de almacenar, solo que este ultimo
es opcional a la hora de declarar la variable pero si es importante que se defina cuando se va a
procesar. Ejemplos

int x=10;

double pago_dolares;
boolean valorReal = false;
String Nombre="Juan Perez”;

Revisemos la estructura de la declaracion de las variables y vemos lo siguiente

Tipos de datos: int, double, boolean, String.
Identificador: x, pago_dolares, valorReal, Nombre.
Valores: 10, false, Juan Perez.

Tipos de Variables.

Ademas de crear variables debemos conocer su @mbito o alcance de dicho elemento lo cual nos
permitira saber en que partes de nuestros programas puede ser utilizada dicha variable. Entre
estas se pueden mencionar las mas importantes.

Variables Locales: estas variables solo se pueden usar dentro de bloques de coédigos de los
programas y cualquier intento de alguna instruccion fuera de este no tendra acceso a los valores
que almacena dicha variable.

Variables globales: este tipo permite el acceso a sus valores desde cualquier lugar dentro del
cédigo pero en Java no existen asi que se sustituyen con variables de instancia y variables de
clase las cuales son las que nos permitiran compartir informacion entre los objetos.

Variables de clase: estas poseen valores similares para la clase y para todas sus instancias. Para
indicar que una variable es una variable de clase se utiliza la palabra clave static en la
declaracion de la variable.

Variable de instancia: es una variable que esta relacionada con una sola instancia de una clase.
Cada vez que una instancia de una clase se crea, el sistema crea una copia de la instancia
variables relacionadas con esa categoria.

public class suma {
static int y=50; // variable de clase

static int sumar(){
int z=4; //variable local y de instancia
return(z+y);

¥

public static void main(String[J]args)<{
System.out.print(sumar());

¥

Aplicaciones Cliente Servidor Pagina 18.

Tec. En Ingenieria en Sistemas

TIPOS DE DATOS

Otro elemento importante dentro del lenguaje Java son los tipos de datos estos nos permiten
poder operar y realizar acciones en conjunto con variables como se menciona antes las variables
tienen que tener un valor asignado y este valor debe ser de un tipo especifico.

En Java encontraremos 8 tipos basicos de de datos los cuales se describen a continuacion.

Tipo de Dato Tamaho Valor minimo Valor maximo

byte 8 bits -128 127

short 16 bits -32768 32767

Int 32 bits -2147483648 2147483647

long 64 bits -9223372036854775808 | 9223372036854775807

float 32 bits +1.40239846e-45 1+3.40282347e+8

double 64 bits +494,065645841246544¢e | £1.79769313486231570e
-324 +308

char 16 bits \u0000 \uffff

boolean n/a true / false true / false

Ademas encontraremos un tipo de

dato que no es basico ya que una libreria de java que lo

implementa dicho tipo es el String y este se usa para trabajar cadenas de caracteres.

LITERALES.

Son identificadores que se definen en Java para indicarle al compilador el tipo de dato que
tendra el valor que se ha asignado a una variable y esto se usa para que dicho valor no cambie
durante la ejecucion del programa. Para definir los literales se usan ciertos caracteres que le
diran al compilador que maneje el dato como una constante.

Literales tipo Ejemplo

True y False booleano x = true, y = false

24, 150 Entero Edad = 24,HorasP =
150

2L, 34L Entero largo Conteo = 2L, CP=45L

2.3, 1.5E3 double Desc = 2.3, cap =
1.5E5

23.5f, 10.75f float Temp = 23.5f, pi =
3.14f

‘a’, 'B’,’\c’ char Dia = 'L’, Esc =K’

“Juan Perez” String Nombre = “Juan
Perez”

Ademas existen ciertos
formatean la salida de una impresion. Veamos cuales son en la siguiente tabla.

caracteres que poseen

una funcién especial en Java las cuales

Caracteres Significado

\b Backspace o
retroceso

\ddd Representacion
Octal.

\f Formfeed o
Avance de hoja

\n Nueva linea

\r Retorno de
carro

\t Tabulacion

\udddd Caracter
unicode

Aplicaciones Cliente Servidor

Pagina 19.

Tec. En Ingenieria en Sistemas

\xdd Representacion
Hexadecimal

\\ Backslash

\’ Comilla Simple

\” Comilla doble

OPERADORES.

Estos son elementos imprescindibles de las expresiones u operaciones que se deben realizar en
una aplicaron ya que el calcular cuanto es la suma de dos valores, saber si un nimero es mayor
que otro y unir dos o mas cadenas de caracteres son acciones que se repiten en todo programa
Yy por eso es necesario contar con los operadores. Estos de agrupan en diversas categorias entre

las cuales son:

Operadores légicos.

Operadores aritméticos
Operadores booleanos.

Operadores con objetos.
Operadores de cadena.
Operadores de gestion de memoria.

Operadores aritméticos:
Se usan para calcular operaciones aritméticas sobre
pueden ser entre uno o mas valores ejemplo.

valores numéricos estas operaciones

Operador Accion Ejemplo
+ Suma 4 + 5=9
- Resta o cambio | 5-1=6, -4
de valor a
negativo
* Multiplicacion 5% 2=10
/ Division 5/ 2=2,5
% Modulo 5% 2=1
++ Amento de valor | 5++ =6
- Disminucion de | 5-- = 4
valor

Operadores Booleanos, de comparacion o Relacionales.
Se usan para devolver valores de verdad en la comparacion de dos datos

Operador Accion Ejemplo
== Igual 5==5 = true
6==5 = false
I= Diferente 7'=5 = true
6!=6 = false
< Menor que 6<7 = true
8<7 = false
6<6 = false
> Mayor que 6>7 = false
8>7 = true
6>6 = false
<= Menor o igual | 6<=7 = true
que 7<=8 = false
6<=6 = true
>= Mayor o igual | 6>=7 = false
que 8>=7 = true
6>=6 = true

Aplicaciones Cliente Servidor

Pagina 20.

Tec. En Ingenieria en Sistemas

Operadores Logicos.
Estos evallan expresiones formadas por operandos que a su vez estdan formados por
expresiones y su resultado es un valor de verdad.

Operador | Accion Ejemplo Tabla de Verdad
&& AND o| (5<4) && (4==5) = A B A&B
Conjuncioén false vV V \Y,
(8!'=8) && (4<5) = V F F
false F V F
(8==4) && (7<5) = F F F
false

(8'=4) && (4<5) = true

|1 OR o Disyuncion | (5<4) || (4==5) = false A B A|B

(8!'=8) || (4<5) = true V V. V

(8==8)|| (7<5) = true V F \Y

(8'=4) || (4<5) = true F V V

FEF F
! NOT o Negacion | 1(6<7) = false A 1A
1(6>7) = true vV F
F V

Operadores de Cadena.

Las cadenas al ser una clase se pueden trabajar por medio de métodos ya definidos pero
también se pueden operadores que nos ayudaran manipular estos elementos y facilitar su
operacion. Podemos utilizar operadores para verificar que una cadena es mayor que otra (>),
concatenar cadenas (+), comparar cadenas (==).

Tarea
Investigar y crear una tabla de jerarquia de operadores en Java.
[0 Investigar que es el casting y su aplicacion en Java.

Aplicaciones Cliente Servidor Pagina 21.

Tec. En Ingenieria en Sistemas

Escuela Especializada A=
en Ingenieria G , , . 2 E’-!I' ‘.‘i

\% FEPANE uia Practica No =

ITCA v ./

Estructuras de control de JAVA: if, swich,
for, while.

OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Crear aplicaciones con estructuras condicionales.
e Crear aplicaciones con estructuras repetitivas.
e Crear aplicaciones con estructuras de control combinadas.

PROCEDIMIENTO

Introduccion.

Las estructuras de control son una implementacion de los lenguajes de programacién para
facilitar la creacion de aplicaciones en las cuales se deben condicionar o repetir ciertas porciones
de cddigo las cuales facilitaran el flujo de cdmo los datos se procesaran.

Existen 2 tipos de estructuras de control las cuales podremos implementar en nuestros
programas y estos son:

e Condicionales: las cuales a partir de la verificacion de ciertos elementos se toman
decisiones las cuales afectaran los resultados de las acciones o las salidas de los
programas.

e Repetitivas: Estas tienen la funcidon de que repiten la ejecucién de ciertos bloques de
codigo lo que nos ayuda a

Estructuras condicionales
En java utilizaremos las condicionales if, if else, switch.

if.
La instruccion la utilizaremos cuando evaluamos si un caso o condicidn es verdadera.
if(x==5){
System.out.printIn(*Condicion Verdadera”);
b
if......else

Esta es una variante de la estructura if, en esta se evalla una condicidn es verdadera pero con
una variante con la que obtendremos un resultado aunque la condicion sea falsa.

if(x==5){

System.out.printIn(“Condicion Verdadera”);
} else {

System.out.printIn(*Condicion Falsa”);
b

switch.

Aplicaciones Cliente Servidor Pagina 22.

Tec. En Ingenieria en Sistemas

Esta estructura se conoce como una condicional multicasos ya que para ejecutar un
blogue de instrucciones se evalia la condicién con varios casos, en los cuales se
ejecuta solo cuando se evalué un caso de verdad, pero si en alguin momento ningun
caso coincide se ejecuta un caso por defecto.

Int x=1;
switch(x){
case (1):

System.out.print("Primer dia de la Semana”);
break;
case (2):

System.out.print("Segundo dia de la Semana”);
break;
case (3):

System.out.print("Tercer dia de la Semana”);
break;
case (4):

System.out.print(” Cuarto dia de la Semana”);
break;
default:

System.out.print(*Otro dia de la Semana”);

bs

Estructuras repetitivas.
Java cuenta con 3 tipos for, while y la variante do...while.

for.
Se usa cuando sabemos en que momento el ciclo se detendra y la estructura es la siguiente.

class CicloFor {
public static void main(String[Jlargs){
inti;
for(i=1;i < 101; ++i){
System.out.print(i + “\t");
b

be
bs

While.
En este ciclo las repeticiones se ejecutan mientras la evaluacién de una condicidn sea verdadera.

class CicloWhile {
public static void main(String[Jargs){
inti=1;
while(i < 101){
System.out.print(i + "\t");
++i;
b
b
b

do...while
En esta estructura ejecuta primero las instrucciones y después se evalla la condicién para
continuar o detener la ejecucién de las instrucciones.

Aplicaciones Cliente Servidor Pagina 23.

Tec. En Ingenieria en Sistemas

class CicloDo{
public static void main(String[Jargs){
inti=1;
do{
System.out.print(i + "\t");
++i;
Ywhile(i<101);
b
b

Ejemplo aplicado.

import java.io.*;

public class casos{
public static void main(String args[])throws IOException{
BufferedReader in =new BufferedReader(new InputStreamReader(System.in));

int n1,n2,sum,res,div,multi;

int op;

System.out.print("Elige una opcion\n");
System.out.print("1 = Realizar Suma\n");
System.out.print("2 = Realizar Resta\n");
System.out.print("3 = Realizar una multiplicacion\n") ;
System.out.print("4 = Realizar una division\n");
op=Integer.parselnt(in.readLine());

switch(op){

case 1:

System.out.print("\nintroduce el primer numero \n");
nl=Integer.parselnt(in.readLine());
System.out.print("\nintroduce el segqundo numero \n");
n2=Integer.parselnt(in.readLine());

sum=nl+n2;

System.out.printin("\nLa Suma es: "+ sum);

break;

case 2:

System.out.print("\nintroduce el primer numero");
nl=Integer.parselnt(in.readLine());
System.out.print("\nintroduce el segundo numero ");
n2=Integer.parselnt(in.readLine());

res=nl-n2;

System.out.printin("\nLa Resta es: "+ res);

break;

case 3:

System.out.print("\nintroduce el primer numero");
nl=Integer.parselnt(in.readLine());
System.out.print("\nintroduce el segundo numero ");
n2=Integer.parselnt(in.readLine());

multi=n1*n2;

System.out.print("\nLa Multiplicacion es: "+ multi);
break;

case 4:

System.out.print("\nintroduce el primer numero");
nl=Integer.parselnt(in.readLine());
System.out.print("\nintroduce el segqundo numero ");
n2=Integer.parselnt(in.readLine());

if(n2==0){

System.out.print("\nError division entre 0 ");

Yelse{

div=n1/n2;

System.out.print("\nLa Division es: "+ div);

Aplicaciones Cliente Servidor Pagina 24.

Tec. En Ingenieria en Sistemas

¥

break;

default:

System.out.print("\neleccion incorrecta");
b

b

b

La instrucciéon BufferedReader in =new BufferedReader(new
InputStreamReader(System.in)) se utiliza para crear un elemento que nos permitira hacer
lecturas desde el teclado, y in.readLine() se utilizara para poder pedir datos por medio de la
consola en nuestras aplicaciones en Java

Ejercicios

[Cree una aplicacién en Java que a partir del sueldo de un empleado calcule el descuento
de la renta, verificar si se puede aplicar dicho descuento y mostrar en pantalla el sueldo
total que recibira el empleado.
Cree una aplicacion en Java que permita calcular el factorial de un nimero entero.
[Cree una aplicacion en Java que imprima los primeros 100 nimeros primos.

B

Aplicaciones Cliente Servidor Pagina 25.

Tec. En Ingenieria en Sistemas

iali il
B e Inganieria Clase N° 3 Er'm!!"ﬁj
ITCA wsrerane | Clases, Atributos , Métodos y ./

Manejo de Excepciones.

OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Definir que es una clase y las partes que la conforman.
Definir que es un atributo de la clase
Definir métodos de la clase
Definir instancias y referencias en Java
Definir mecanismos de aplicacién de herencia entre clases de Java
Definir que es una interfase en Java.
Identificar instrucciones para el manejo de excepciones en Java

| DESARROLLO

Introduccion

El elemento basico de la programacion orientada a objetos en Java es la clase. Una clase define
la forma y comportamiento de un objeto.

Para crear una clase sélo se necesita un archivo fuente que contenga la palabra clave reservada
class seguida de un identificador legal y un bloque delimitado por dos llaves para el cuerpo de la
clase.

class Eiemplo {

}

Un archivo de Java debe tener el mismo nombre que la clase que contiene, y se les suele asignar
la extension ".java". Por ejemplo la clase Ejemplo se guardaria en un fichero que se denomina
Ejemplo.java. Hay que tener presente que en Java se diferencia entre mayusculas y minusculas;
el nombre de la clase y el de archivo fuente han de ser exactamente iguales.

Una clase es un conjunto de métodos y variables relacionadas, basadas en la programacion
orientada a objetos(POO). Por lo tanto define la estructura de un objeto y su interfaz funcional,
en forma de métodos. Cuando se ejecuta un programa en Java, el sistema utiliza definiciones de
clase para crear instancias de las clases, que son los objetos reales. Los términos instancia y
objeto se utilizan de manera indistinta. La forma general de una definicidén de clase es:

class Nombre_De_Clase {

tipo_de_variable nombre_de_atributo1l;

tipo_de_variable nombre_de_atributo2;

/...

tipo_devuelto nombre_de_método1(lista_de_parametros) {
cuerpo_del_método1;

b

tipo_devuelto nombre_de_método2(lista_de_parametros) {
cuerpo_del_método2;

b

/...

)

Aplicaciones Cliente Servidor Pagina 26.

Tec. En Ingenieria en Sistemas

Los tipos tipo_de_variable y tipo_devuelto, han de ser tipos simples Java o nombres de otras
clases ya definidas. Tanto Nombre_De_Clase, como los nombre_de_atributo vy
nombre_de_método, han de ser identificadores Java validos.

Ademas la clase consta de dos partes fundamentales las cuales son la:

e Declaracién de la clase: en esta parte se define el nombre de la clase y la definicion de
si heredara elementos de otras clases, y otros atributos que seran indispensables
segun las necesidades de las aplicaciones que creemos.

e Cuerpo de la clase: en esta parte se declaran todos los método(funciones) y
atributos(variables), que permiten la ejecucion de acciones y devolucién de resultados
de los procesos de la clase.

Los datos se encapsulan dentro de una clase declarando variables dentro de bloques de cédigo
que se distinguen por empezar por una llave de apertura, el contenido del bloque y la llave de
cierre, dentd del contenido del bloque de cédigo podremos encontrar variables y funciones.
Vistos los Elementos anteriores vamos a definir los modificadores de acceso que son elementos
que indican como se comportan los objetos y si pueden compartir datos entre ellos y otras
clases.

Modificadores de Clases

e public - Todas las clases puede acceder al elemento. Si es un dato miembro, Todas las
clases puede ver el elemento, es decir, usarlo y asignarlo. Si es un método Todas las
clases puede invocarlo.

e private - Solo se puede acceder al elemento desde métodos de la clase, o s6lo puede
invocarse el método desde otro método de la clase.

e protected - es una combinacion de los accesos que proporcionan los modificadores
public y private. proporciona acceso publico para las clases derivadas y acceso privado
para el resto de clases.

e sin modificador - Se puede acceder al elemento desde cualquier clase del package donde
se define la clase.

Modificadores de métodos variables

e static - que se usa para definir datos miembros o métodos como pertenecientes a una
clase, en lugar de pertenecer a una instancia.

e final - se usa para indicar que un método, un dato miembro (variable) no se podran
redefinir dentro de otra ya sea que se utilice herencia o instancias, ademas se usa para
definir un valor constante en el caso de las variables.

o abstract - Se utiliza para crear métodos o clases abstractas o sea que no tienen
implementacion (nada de cddigo).

¢ synchronized - se usa para indicar que ciertas partes del cédigo, (habitualmente, una
funcion miembro) estan sincronizadas, es decir, que solamente un subproceso puede
acceder a dicho método a la vez.

Los atributos

En java a las variables se les conoce como atributos. Se declaran igual que las variables locales
de un método en concreto.

Por ejemplo, este es un programa que declara una clase Ejemplo, con dos atributos enteros
Ilamados x e y.

class Ejemplo {
int x, y;

b

Los atributos se pueden declarar con dos clases de tipos: un tipo simple Java (int, float,
boolean), o el nombre de una clase (sera una referencia a objeto).

Aplicaciones Cliente Servidor Pagina 27.

Tec. En Ingenieria en Sistemas

Cuando se realiza una instancia de una clase (creacion de un objeto) se reservara en la memoria
un espacio para un conjunto de datos como el que definen los atributos de una clase. A este
conjunto de variables se le denomina variables de instancia.

Los métodos

Los métodos son subrutinas que definen la interfaz de una clase, sus capacidades y
comportamiento.

Un método ha de tener por nombre cualquier identificador legal distinto de los ya utilizados por
los nombres de la clase en que esta definido. Los métodos se declaran al mismo nivel que las
variables de instancia dentro de una definicion de clase.

En la declaracién de los métodos se define el tipo de valor que devuelven y a una lista formal de
parametros de entrada, de sintaxis tipo identificador separadas por comas. La forma general de
una declaracién de método es:

tipo_devuelto nombre_de_método(lista-formal-de-parametros) {
cuerpo_del_método;

b

Por ejemplo el siguiente método devuelve la suma de dos enteros:

int metodoSuma(int paramX, int paramyY) {
return (paramX + paramy);

bs

En el caso de que no se desee devolver ningun valor se debera indicar como tipo la palabra
reservada void. Asi mismo, si no se desean parametros, la declaracion del método deberia incluir
un par de paréntesis vacios (sin void):

void metodoVacio() { };

La instanciacion de las clases: Los objetos

Referencias a Objeto e Instancias

Una referencia a un objeto es el paso previo para obtener una instancia de la clase tipo del
objeto. Cuando referenciamos un objeto estamos declarando un objeto (variable) de la clase tipo
y le estamos asignando un valor inicial

Ejemplo Ej;

Esta es una declaracion de una variable Ej que es una referencia a un objeto de la clase
Ejemplo, de momento con un valor por defecto de null.

Ahora la instancia del objeto se realiza dando un valor a la variable que creamos anteriormente,
el valor debe de ser un objeto al que se hace la referencia en este caso la declaracion quedaria
de la siguiente manera:

Ejemplo Ej;

Aplicaciones Cliente Servidor Pagina 28.

Tec. En Ingenieria en Sistemas

Ej = new Ejemplo();

Esta declaracion define que tipo de objeto utilizaremos y como lo llamaremos ademas que
automaticamente implementaremos todas las variables y métodos del objeto al cual se hace la
llamada por medio de la declaracion new Ejemplo()

Constructores

Las clases pueden implementar un método especial llamado constructor. Un constructor es un
método que inicia un objeto inmediatamente después de su creacidn. De esta forma nos
evitamos el tener que iniciar las variables explicitamente para su iniciacién.

El constructor tiene exactamente el mismo nombre de la clase que lo implementa; no puede
haber ningun otro método que comparta su nombre con el de su clase. Una vez definido, se
llamara automaticamente al constructor al crear un objeto de esa clase (al utilizar el operador
new).

El constructor no devuelve ningun tipo, ni siquiera void. Su misién es iniciar todo estado interno
de un objeto (sus atributos), haciendo que el objeto sea utilizable inmediatamente; reservando
memoria para sus atributos, iniciando sus valores.

Por ejemplo:

Class Ejemplo{

Ejemplo() {
int x=5;
inty=2;

b

b

Este constructor denominado constructor por defecto, por no tener parametros, establece el
valor 5 a la variable x y de 2 a la variable y esos valores se iniciaran automaticamente por ser
parte del constructor.

El compilador, por defecto, llamara al constructor de la superclase Object() si no se especifican
parametros en el constructor.

Este otro constructor, sin embargo, recibe dos parametros:

public class Datos {
int a,b;

Datos(int y, int x){

a=y;

b=x;

b

bs

La lista de parametros especificada después del nombre de una clase en una sentencia new se
utiliza para pasar parametros al constructor.

Se llama al método constructor justo después de crear la instancia y antes de que new devuelva
el control al punto de la llamada.

Asi, cuando ejecutamos el siguiente programa:

Datos dat = new Datos(1, 5);

System.out.printin("Dato 1 = ” + dat.a);
System.out.printin(*Dato 2 = ” + dat.b);

/*
Se muestra en la pantalla:

Aplicaciones Cliente Servidor Pagina 29.

Tec. En Ingenieria en Sistemas

Dato 1
Dato 2

1
5 */

Esto indica que un constructor podra recibir parametros como un método cualquiera, pero surge
una pregunta écuantos constructores puede tener una clase? La respuesta esta en el siguiente
codigo:

public Constructor() {
System.out.printin("nada");

b

public Constructor(String tipo) {
System.out.printin("un valor de Cadena " + tipo);

b

public Constructor(int distancia) {
System.out.printin("Un valor entero " + distancia + " metros");

b

public Constructor(int distancia,String tipo) {
System.out.printin("Un " + tipo + " corre a " + distancia + " metros");
b
b

Entonces pueden definirse muchos constructores dentro de una clase siempre y cuando tengan
diferentes pardmetros y a esto se le denomina como sobre carga del constructor.

La herencia
Es el mecanismo fundamental de relacion entre clases en la orientacidon a objetos. Relaciona las
clases de manera jerarquica; una clase padre o superclase sobre otras clases hijas o subclases.

Clase Padre

Clase Hija1| |Clase Hija2

Los descendientes de una clase heredan todas las variables y métodos que sus ascendientes
hayan especificado como heredables, ademas de crear los suyos propios.

La caracteristica de herencia, nos permite definir nuevas clases derivadas de otra ya existente,
que la especializan de alguna manera. Asi logramos definir una jerarquia de clases, que se
puede mostrar mediante un arbol de herencia.

En todo lenguaje orientado a objetos existe una jerarquia, mediante la que las clases se
relacionan en términos de herencia. En Java, el punto mas alto de la jerarquia es la clase Object
de la cual derivan todas las demas clases.

En java par indicar que una clase heredard de otra se define la palabra reservada extends, hay
gue tomar muy en cuenta que solo se puede heredar de una clase a la vez en java no existe la
herencia multiple, los elementos heredados deben de ser de tipo static ya que un si no se
definen de esta forma no se podra acceder ellos. Veamos un ejemplo de como funciona la
herencia

Aplicaciones Cliente Servidor Pagina 30.

Tec. En Ingenieria en Sistemas

public class Madre { public class Hija extends Madre{
static int edad=69; static int edad = 25;
static double altura =1.67; public static void main
static String » (String[J]args){
color_pelo="cafe"; System.out.printin(edad);
static void abrazo(){ System.out.printin(altura);
System.out.print("XD"); color_pelo="rojo";
b Madre.abrazo();
- ¥

public class Nieta extends Hija{

public static void main

(String[Jargs)<{
System.out.printin(edad);
System.out.printin(altura);
Hija.abrazo();
color_pelo="Rosado";

System.out.printin(color_pelo);

En el ejemplo anterior podemos observar que la herencia se hace desde una clase en este caso
denominada Madre a la cual se le conoce como sUper clase ya que esta no hereda de otras
clases pero si comparte atributo y métodos con otras clases. Esta le pasa todos los atributos a la
clase hija o sub clase pero esta a su vez puede modificar los atributos segin convenga vy
ademas lo heredera también a la clase nieta que al igual que la clase hija podra modificar los
atributos seglin sea necesario. Ahora si no se quisiera heredar algun atributo o método lo Unico
que se hace es definir el modificador de acceso private para que ese elemento se Unico de la
clase en que se implementa.

Interface

El concepto de Interface lleva un paso mas adelante la idea de las clases abstractas. En Java una
interface es una clase abstracta pura, es decir una clase donde todos los métodos son abstractos
(no se implementa ninguno). Permite al disefiador de clases establecer la forma de una clase
(nombres de métodos, listas de argumentos y tipos de retorno, pero no bloques de cddigo).

Una interface puede también contener datos miembro, pero estos son siempre static y final. Una
interface sirve para establecer un 'protocolo’ entre clases.

Para crear una interface, se utiliza la palabra clave interface en lugar de class. La interface
puede definirse public o sin modificador de acceso, y tiene el mismo significado que para las
clases. Todos los métodos que declara una interface son siempre public.

Para indicar que una clase implementa los métodos de una interface se utiliza la palabra clave
implements. El compilador se encargara de verificar que la clase efectivamente declare e
implemente todos los métodos de la interface. Una clase puede implementar mas de una
interface.

Aplicaciones Cliente Servidor Pagina 31.

Tec. En Ingenieria en Sistemas

Declaracion y uso

Una interface se declara:

interface nombre_interface {
tipo_retorno nombre_metodo (lista_argumentos) ;

b

interface InstrumentoMusical {
void tocar();
void afinar();
String tipolnstrumento();

b

Y una clase que implementa la interface:

class InstrumentoViento extends Object implements InstrumentoMusical {
void tocar() { . . . };
void afinar() { .. .};
String tipoInstrumento() {}
b
class Guitarra extends InstrumentoViento {
String tipolnstrumento() {
return "Guitarra";
b
bs

La clase InstrumentoViento implementa la interface, declarando los métodos y escribiendo el
codigo correspondiente. Una clase derivada puede también redefinir si es necesario alguno de
los métodos de la interface.

Referencias a Interfaces

Es posible crear referencias a interfaces, pero las interfaces no pueden ser instanciadas. Una
referencia a una interface puede ser asignada a cualquier objeto que implemente la interface.
Por ejemplo:

InstrumentoMusical instrumento = new Guitarra();

instrumento.play();

System.out.prinin(instrumento.tipoInstrumento());

InstrumentoMusical i2 = new InstrumentoMusical(); //error.No se puede instanciar

Extension de interfaces

Las interfaces pueden extender otras interfaces y, a diferencia de las clases, una interface puede
extender mas de una interface. La sintaxis es:

interface nombre_interface extends nombre_interface , ... {
tipo_retorno nombre_metodo (lista_argumentos) ;

GESTION DE EXCEPCIONES Y ERRORES

Aplicaciones Cliente Servidor Pagina 32.

Tec. En Ingenieria en Sistemas

El control de flujo en un programa Java puede hacerse mediante las ya conocidas sentencias
estructuradas (if, while, return). Pero Java va mucho mas alla, mediante una técnica de
programacion denominada gestion de excepciones.

Mediante las excepciones se podra evitar repetir continuamente cédigo, en busca de un posible
error, y avisar a otros objetos de una condicién anormal de ejecucién durante un programa.

Tipos de excepciones

Existen varios tipos fundamentales de excepciones:
e Error: Excepciones que indican problemas muy graves, que suelen ser no recuperables y
no deben casi nunca ser capturadas.
e Exception: Excepciones no definitivas, pero que se detectan fuera del tiempo de
ejecucion.
e RuntimeException: Excepciones que se dan durante la ejecucién del programa.

Todas las excepciones tienen como clase base la clase Throwable, que estd incluida en el
paquete java.lang.

Funcionamiento

Para que el sistema de gestion de excepciones funcione, se ha de trabajar en dos partes de los
programas:

e Definir qué partes de los programas crean una excepcién y bajo qué condiciones. Para
ello se utilizan las palabras reservadas throw y throws.

e Comprobar en ciertas partes de los programas si una excepcion se ha producido, y
actuar en consecuencia. Para ello se utilizan las palabras reservadas try, catch y
finally.

Manejo de excepciones: try - catch - finally

Cuando el programador va a ejecutar un trozo de cédigo que pueda provocar una excepcion
(pedir un dato por teclado), debe incluir este fragmento de cddigo dentro de un bloque try:

try {

// Cdédigo posiblemente problematico

bs

Pero lo importante es como controlar qué hacer con la posible excepcion que se cree. Para ello
se utilizan las clausulas catch, en las que se especifica que accidn realizar:

try {
// Cddigo posiblemente problematico
} catch(tipo_de_excepcion e) {
// Cédigo para solucionar la excepcién e

} catch(tipo_de_excepcion_mas_general e) {
// Cddigo para solucionar la excepcién e

}

En el ejemplo se observa que se pueden anidar sentencias catch, pero conviene hacerlo
indicando en Uultimo lugar las excepciones mas generales (es decir, que se encuentren mas

Aplicaciones Cliente Servidor Pagina 33.

Tec. En Ingenieria en Sistemas

arriba en el arbol de herencia de excepciones), porque el intérprete Java ejecutara aquel bloque
de cddigo catch cuyo parametro sea del tipo de una excepcion lanzada.

Si por ejemplo se intentase capturar primero una excepcién Throwable, nunca llegariamos a
gestionar una excepcion Runtime, puesto que cualquier clase hija de Runtime es también hija de
Throwable, por herencia.

Si no se ha lanzado ninguna excepcion el codigo continda sin ejecutar ninguna sentencia catch.
Pero, ¢y si quiero realizar una accion comun a todas las opciones?. Para insertar fragmentos de
codigo que se ejecuten tras la gestion de las excepciones. Este codigo se ejecutara tanto si se ha
tratado una excepcion (catch) como sino. Este tipo de cddigo se inserta en una sentencia finally,
que sera ejecutada tras el bloque try o catch:

try {

} catch(Exception e) {

¥ finally {

// Se ejecutara tras try o catch

bs

Lanzamiento de excepciones: throw — throws

Muchas veces el programador dentro de un determinado método deberd comprobar si alguna
condicién de excepcién se cumple, y si es asi lanzarla. Para ello se utilizan las palabras
reservadas throw y throws.

Por una parte la excepcion se lanza mediante la sentencia throw:

if (condicion_de_excepcion == true)

throw new miExcepcion();

Se puede observar que hemos creado un objeto de la clase miExcepcion, puesto que las
excepciones son objetos y por tanto deberan ser instanciadas antes de ser lanzadas.

Aquellos métodos que pueden lanzar excepciones, deben indicarse cuales son esas excepciones
en su declaracién. Para ello se utiliza la sentencia throws:

tipo_devuelto miMetodoLanzador() throws miExcepl, miExcep2 {
// Codigo capaz de lanzar excepciones miExcepl y miExcep2

bs

Tarea
[0 investigar los métodos y atributos de la clase object.
[Investigar los métodos y atributos de la clase Throwable.

Aplicaciones Cliente Servidor Pagina 34.

Tec. En Ingenieria en Sistemas

Escuela Especializada

en Ingenieria ﬂ’;'\h
ITC A Nz FEPANE L , . 5%)}
Guia Practica No 3 s

Clases, Atributos , Métodos y Manejo de Excepciones..

OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Crear referencias e instancias en Java.
e Crear herencia entre clases de Java.
e Crear manipuladores de excepciones en Java.

‘ PROCEDIMIENTO

Introduccion.

Las clases en Java son los elementos en los cuales se agrupan los métodos y atributos
necesarios para crear aplicaciones ya que un conjunto de clases pueden conformar una
aplicacion completa y los atributos y métodos relacionados entre estas se comparten y logran un
flujo completo de informacion, por tal motivo es indispensable saber la mejor forma de poder
implementarlos y utilizarlos para poder brindar soluciones a los problemas planteados en
nuestras aplicaciones primero creemos una clase sencilla la cual llamaremos.

Opereaciones.java

public class Operaciones {

double potencia(double Vall,double Val2){
return(Math.pow(Vall, Val2));

b

double raiz(double Val){
return(Math.sqrt(Val));

b
bs

Ya creada la clase creamos una nueva clase la con la cual crearemos una referencia a la clase
operaciones

OpeCuadratica.java

public class OpeCuadratica {
static void OpCuadratica(double a,double b,double c){
Operaciones op;
op=new Operaciones();

double valorPos, valorNeg,valPot,Op1,ValD;

Opl=-1*b;

valPot=op.potencia(b, 2.0)-4*(a*c);

ValD=2%*a;

If(valPot < 1){

System.out.print(“Error los datos han devuelto una raiz negativa”);
} else {

valorPos=(Op1+ op.raiz(valPot))/ValD;

valorNeg=(Op1- op.raiz(valPot))/ValD;

Aplicaciones Cliente Servidor Pagina 35.

Tec. En Ingenieria en Sistemas

System.out.print("El resultado del calculo es:\nValor Positivo:"+valorPos+"\nValor
Negativo:"+valorNeg);

b
b

public static void main(String[]args){

OpCuadratica(2,3,1);

b
bs

Ahora utilizaremos la clase creada antes pero esta vez heredaremos las funciones y ademas
agregaremos un manejador de excepcion con el cual podremos advertir al usuario si hay un
error al introducir los datos

import java.io.*;
public class Cuadratica extends OpeCuadratica{

public static void main(String[]args) throws IOException{
BufferedReader in ;
in=new BufferedReader(new InputStreamReader(System.in));
double a,b,c;
try{
System.out.print("Digite el Valor de A:\n");
a=Double.valueOf(in.readLine());
System.out.print("Digite el Valor de B:\n");
b=Double.valueOf(in.readLine());
System.out.print("Digite el Valor de C:\n");
c=Double.valueOf(in.readLine());
OpCuadratica(a,b,c);
}catch(Exception e){

System.out.print("Error en la introduccion de los Datos" +e.getMessage());

¥

Con estas clases se puede revisar como se aplica la herencia y las referencias a clases y a la vez
como se implementa un manejador de excepcion.

Revisemos el siguiente ejemplo donde se aplica una sobrecarga de constructores.

mensaje.java

public class mensaje {
mensaje(int vall){
System.out.print("\nvalor almacenado "+vall);

mensaje(double vall){
System.out.print("\nvalor almacenado " +vall);

b

mensaje(String vall){
System.out.print("\nvalor almacenado " +vall);

bs

Aplicaciones Cliente Servidor Pagina 36.

Tec. En Ingenieria en Sistemas

bs

Constructores.java

public class Constructores {
public static void main(String[Jargs){
mensaje m1l,m2,m3;
m1l = new mensaje(3);
m2 = new mensaje(2.38);
m3 = new mensaje("Caracteres");

bs

Con estas 2 clases se verifica como se sobrecarga un método constructor, y verificamos que al
tener parametros diferentes no afecta que poseen al mismo nombre.

Crear una clase en Java con la cual se sobre cargue 3 constructores los cuales permitan sumar 2
valores del mismo tipo.

(L) Crear una clase en Java que implemente 5 métodos para realizar célculos de areas de diferentes
poligonos (rectangulo, tridngulos, rombo etc).

[Crear una clase que haga la referencia a la clase creada anteriormente e implemente las funciones
creadas realizando el calculo de 3 areas de poligonos diferentes.

Aplicaciones Cliente Servidor Pagina 37.

Tec. En Ingenieria en Sistemas

X
T o F-
T (Slase N4 an CL)
ITCA v Ferane Introduccion a la interfaz Grafica S
y Modelo de Eventos.
| OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
¢ Definir que es un GUI.
e Definir librerias para la creacion de interfaces graficas.
e Definir caracteristicas de la tecnologia Swing de java.

DESARROLLO

Introduccion.
En el desarrollo de aplicaciones con Java existen 2 formas de trabajo el modo de consola y las
ventanas, el trabajo a modo de consola resulta sencillo ya que en linea de comandos se muestra
la informacién de las salidas de los programa de una forma sencilla pero a la vez resulta muy
engorroso el trabajo de solo teclear comandos para que nuestros programas procesen
informacién, por tal motivo se hace uso de interfaces graficas para los usuarios(GUI), las cuales
se encargan de mostrar por medio de objetos de ventanas(botones, cajas de texto, areas de
escritura), una mejor presentacion de nuestro programa y facilita al usuario el uso del mismo.
Pero resulta un poco complicado para el programador crear dichos elementos, aunque la
mayoria de lenguajes de programacion implementa sus propias bibliotecas para la creacién de
GUI'S. En java podemos encontrar dos bibliotecas las cuales permiten generar las GUI las cuales
se importan y permiten la implementacion de las clases para la creacién de objeos y manejo de
eventos estas bibliotecas son:

e Java AWT(Abstract Window ToolKit).

e Java Swing.

AWT
La Abstract Window Toolkit (AWT, en espafiol Kit de Herramientas de Ventana Abstracta) es un
kit de herramientas de graficos, interfaz de usuario, y sistema de ventanas independiente de la
plataforma original de Java. AWT es ahora parte de las Java Foundation Classes (JFC) - la API
estandar para suministrar una interfaz grafica de usuario (GUI) para un programa Java.
Dentro del AWT EI Contenedor de los Componentes es el Frame o se puede denominar como la
ventana principal de la aplicacion.
El AWT se encuentra desfasado con respecto a la creacion de GUI's, pero la biblioteca AWT no se
excluye de Java por que su uso que se le da es el del control de eventos.
Estructura del AWT
La estructura de la version actual del AWT se puede resumir en los puntos que se exponen a
continuacion:
e Los Contenedores contienen Componentes, que son los controles basicos
e No se usan posiciones fijas de los Componentes, sino que estan situados a través de una
disposicién controlada (layouts)
e El comun denominador de mas bajo nivel se acerca al teclado, raton y manejo de
eventos
e Alto nivel de abstraccién respecto al entorno de ventanas en que se ejecute la aplicaciéon
(no hay areas cliente, ni llamadas a X, ni hWnds, etc.)
e La arquitectura de la aplicacion es dependiente del entorno de ventanas, en vez de tener
un tamano fijo
e Es bastante dependiente de la maquina en que se ejecuta la aplicacion (no puede asumir
que un didlogo tendra el mismo tamafio en cada maquina)
e Carece de un formato de recursos. No se puede separar el cddigo de lo que es
propiamente interface. No hay ningun disefiador de interfaces

Aplicaciones Cliente Servidor Pagina 38.

Tec. En Ingenieria en Sistemas

L=/ 9 =63
|tE}ﬂFieId1
hutton1 |

AWT

Ventana creada con

Swing
Es una biblioteca grafica para Java que forma parte de las Java Foundation Classes (JFC).
Incluye widgets para interfaz grafica de usuario tales como cajas de texto, botones,
desplegables y tablas.

Swing es una plataforma independiente. Sigue un simple modelo de programacion por hilos, y
posee las siguientes caracteristicas principales:

o Independencia de plataforma: Swing es una plataforma independiente en ambos
términos de su expresion (java) y de su implementacion (no-nativa interpretacion
universal de widgets).

o Extensibilidad: Swing es una arquitectura altamente particionada que permite la
utilizacion de diferentes pluggins en especificos interfaces de diferentes frameworks: Los
usuarios pueden proveer sus propias implementaciones modificadas para sobrescribir las
implementaciones por defecto. En general, los usuarios de swing pueden extender el
framework para: extender clases existentes (framework); proveyendo alternativas de
implementacion para elementos esenciales.

e Orientado a componentes: Swing es un framework basado en componentes. La
diferencia entre objetos y componentes es un punto bastante sutil: concisamente, un
componente es un objeto de buena conducta con un patréon conocido y especificado
caracteristico del comportamiento.

e Customizable: Dado el modelo de representacion programatico del framework de
swing, el control permite representar diferentes 'look and feel' (desde MacOS look and
feel hasta Windows XP look and feel). Mas alla, los usuarios pueden proveer su propia
implementacion look and feel, que permitird cambios uniformes en el look and feel
existente en las aplicaciones Swing sin efectuar ningin cambio al cédigo de aplicacién.

e Lightweight UI: La magia de la flexibilidad de configuracién de Swing, es también
debido al hecho de que no utiliza los controles del GUI del OS nativo del host para la
representacion, pero usa parte de los apis 2D de Java.

FEX

iTextField1]

jButton

Ventana creada con Swing

Es muy importante entender y asimilar el hecho de que Swing es una extension del AWT, y no
un sustituto encaminado a reemplazarlo. Aunque esto sea verdad en algunos casos en que los
componentes de Swing se corresponden a componentes del AWT; por ejemplo, el JButton de
Swing puede considerarse como un sustituto del Button del AWT.

Ejmeplo de uso de Swing

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class HolaMundoSwing {
public static void main(String[] args) {
JFrame frame = new JFrame("HolaMundoSwing");

Aplicaciones Cliente Servidor Pagina 39.

Tec. En Ingenieria en Sistemas

final JLabel label = new JLabel("Hola Mundo");
frame.getContentPane().add(label);

// listener para disparar el evento de cierre de ventana

frame.addWindowListener(new java.awt.event.WindowAdapter(){
public void windowClosing(WindowEvent e){
System.exit(0);
b
b
)i

frame.pack();
frame.setVisible(true);

Salida del Cddigo

Principales aspectos de una aplicacion Swing
Como ya se dijo antes, cada aplicacién Swing debe tener al menos un top-level container que
contendra toda la aplicacidn, estos pueden ser
e javax.swing.JFrame: Una ventana independiente.
e javax.swing.JApplet: Un applet.
e Dialogos: ventanas de interaccion sencilla con el usuario como por ejemplo:
o java.swing.JOptionPane: Ventana de didlogo tipo SI_NO, SI_NO_CANCELAR,
ACEPTAR, etc...
o java.swing.JFileChooser: Ventana para elegir un archivo.
o java.swing.JColorChooser
o etc.
A un contenedor se le pueden agregar otros contenedores o componentes simples.

Tarea:
Investigar la estructura de los paquetes AWT y Swing.

Aplicaciones Cliente Servidor Pagina 40.

Tec. En Ingenieria en Sistemas

EscuelalEspegia[izada -ﬁ\l-, il

en Ingenieria e e - i
Guia Practica No 4 M=

ITCA wzrFerRDE E"“Jo;/"

Esquema de una aplicacion -
orientada a eventos.

OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Crear clases con componentes de interfase grafica swing.
e Crear aplicaciones para manipular datos con interfase grafica.

PROCEDIMIENTO

Para crear interfaces graficas con Java NetBeans no necesitamos instalar ningun complemento
adicional ya que el IDE cuenta con las herramientas necesarias para crear estos componentes.
Lo que debemos tomar muy en cuenta es que no utilizaremos los archivos de clases comunes si
no que debemos seleccionar especificamente los tipos de archivos de interfaces graficas que
estan incluidos en el IDE para ello realizaremos los siguientes pasos.

1. Agregar un nuevo archivo en su proyecto seleccionando la categoria Swing GUI
Forms y el tipo de archivo Jframe Form, dar clic en siguiente.

Choose File Type

Project: | &» prusbaswing L
Cateqgaries: File Types:

.....) Java E IDialog Form

..... I swing GUI Forms Q JFrame Form

,,,,, [C3) JavaBeans Ohiects | JinternalFrame Form

-----) AWT GUI Farms Q Jranel Farm

.] Inpplet Form

""" Q) Juni |:| Bean Form

""" I3 Persistence =" Application Sample Farm

""" I Web Services [=] mo1 Application Sample Farm

""" I =L =] Master/Detail Sample Form

----- I Other |25 OK [Cancel Dialog Sample Form

2. Colocar el nombre de la clase y dar clic en finalizar aparecera una area de trabjo en
donde podremos crear y manipular de forma visual los formularios y controles Swing.

Start Page = | 0] Preuba.java = (=)@ |: palette i x|
Source | Design D - ERLErET > & =i Swing Containers ~|
e . — || Panel "] Tabbed Pane
1L split Pane |.H scrall Pane P
aleta de
[Tool Bar 4 Deskiop Pane Controles
[tnternal Frame | ™| Layered Pane
= Swing Controls
bl Label (k] Butkan
(8] Toggle Bukton [~ Check Bax
&~ Radio Button 52 Button Group
L=l Comba Bax [List ~
:[IFrame] - Properties o =
, | Properties | Binding Everits Code
Area de del‘aullcloaeoperation;EXI'I";ON,,CLOsE v [~
Trabajo L —
1= Cther Properties
T — | Paleta de

alvwaysOnTopSupparted

alwaysOnTop 0

~|| Propiedades

{boolean) alwaysonTop

Aplicaciones Cliente Servidor Pagina 41.

Tec. En Ingenieria en Sistemas

Ya creado el archivo lo Unico que nos resta es agregar los controles para ello el proceso que
realizaremos es el arrastrar el control de la paleta hacia el area del formulario o dar clic sobre el
control y ponerlo sobre el formulario.

iLabell jTogoleButtonl () jRadioButtonl 0

Ttem 1 % iTextFieldl o
| -"-"'..'...'..
jButtonl [Ttem 1|
Thlel Thle2 Tikle3 Titled e 2
|Tkerm 3|
[iCheckBax1 [ttem 4|
|Tkem 5|

[43

Ejemplos de uso de controles y eventos de un formulario.

Ejemplol

Creamos un formulario con un Jtextfield y un Jbutton y definimos una accién para el boton, la
cual sera mostrar un mensaje en la caja de texto. Para agregar eventos lo que haremos es dar
clic derecho sobre el control al cual le queramos definir una accidén y en el menu contextual

seleccionaremos lo siguiente.
L& Tool Bar

] Internal Frame
- Swing Controls

: T wbet Label
P Edie Text

LE4] Toggle Button
Change Yariable Name .,

b ;| #— Radio Button
ik b ||Esees
. Ancestor »] Text Field
&nchor 4 R : LAy
Component »
Ao Resizing » Container » = s
S » Fiti ’ [=+1 Password Field
Set Default Size Hierarchy » i—1 Separator
Space Around Companent... HierarchyBounds » e
Enclose In InputMethod B fButtont [JButto
¥ Item » Properties | Bind
key » =

M reeMitinn » mouseEntered

Al dar clic nos parecera la ventana de codificacion donde debemos agregar las instrucciones que
se ejecutaran cuando demos clic sobre el botén en nuestro ejemplo seran las siguientes.

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
jTextField1l.setText("Ejemplo de Accién");

bs

Ahora probamos el resultado ejecutando la clase.

Aplicaciones Cliente Servidor Pagina 42.

Tec. En Ingenieria en Sistemas

Ejernplo e Accidn|

prueba |

De esta forma podemos crear interfaces graficas y adicionar eventos .

Ejemplo2
Crearemos un formulario con 2 cajas de texto y crearemos una accion para que al teclear un
texto en la caja 1 todo lo que tecleemos pase a la caja 2 el cddigo para hacer lo siguiente.

private void jTextField1KeyTyped(java.awt.event.KeyEvent evt) {
jTextField2.setText(jTextField1l.getText());

bs

Ejercicios.
e Cree un formulario para calcular la suma de 2 cantidades (utilice las funciones valueOf
para poder cambiar los tipos de datos.).
e Cree un formulario para la captura de datos de usuario(hombre, edad, estado civil, etc.)
e imprimalos dentro de un control Jlabel cuando se presione un botén en el mismo
formulario.

Aplicaciones Cliente Servidor Pagina 43.

Tec. En Ingenieria en Sistemas

Escuela Especializada Clase N° 5
Desarrollo de Interfaces.

en Ingenieria

I'TCA wzFerane

OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Definir Elementos para el desarrollo de interfaces.
e Definir el uso de métodos para el trabajo con interfaces graficas.
e Definir el empleo adecuado de salidas en los procesos de un programa.

DESARROLLO

Introduccion.

Para el desarrollo de Interfaces graficas en importante identificar las partes fundamentales que
estas deberan poseer tanto de los controles y la disposicion de los mismos, los eventos
necesarios para su funcionamiento y como se comportan ya estando en funcionamiento.

Es importante entonces reconocer métodos (en el caso de los controles) para el acceso de datos
y para compartirlos entre los mismos.

Desarrollo de una interfase.

Lo primero que debemos conocer para la creacion de una interfase es saber, cual es la necesidad
0 para que usos se crearia. Apliqguemos un ejemplo basico una interfase para la suma de dos
numeros enteros.

¢Que necesitamos pare crear dicha interfase?

La respuesta a dicha pregunta es:

Un formulario para contener los controles (JFrame).

2 cajas de texto (JTextField).

Un botdén (JButton).

Y labels que se consideren necesarios (JLabel).

La interfase quedara
de la siguiente forma.

[2] .Suma de Enterns"g.[-iﬂ

Suma de Enteros
Valor 1 |—
Valor 2 |7I
Total

Calcular

Ahora tenemos que codificar el evento necesario y en el control adecuado, las acciones
necesarias para que se puedan sumar los 2 valores. Tomamos en consideracién aspectos
necesarios para codificar de forma correcta y evitar errores a la hora de correr nuestra aplicacion
un aspecto del cual hablamos es el siguiente, los controles Unicamente trabajan con caracteres
no reconocen cantidades numéricas. Entonces para poder realizar la operacion debemos de
convertir los datos que se mandan con los controles usamos la funcién de acuerdo al tipo de
datos a operar en el caso de nuestra aplicacién son enteres entonces usamos la Clase Integer y
su funcion valueOf la cual convierte los datos a numeros enteros, otro aspecto es el como
obtendremos los datos de los controles y como enviaremos resultados hacia un control esto lo
haremos con la funcion getText y setText, y ahora es necesario, convertir el total pero al igual

Aplicaciones Cliente Servidor Pagina 44.

Tec. En Ingenieria en Sistemas

que al capturar los datos tenemos que convertir el valor por que el resultado devuelto es un tipo
de dato numerico y los controles solo aceptan texto éComo haremos para convertirlo?.

El cédigo es el siguiente es.

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
int total,vall,val2;

vall=Integer.valueOf(jTextField1l.getText());
val2=Integer.valueOf(jTextField2.getText());

total=vall+val2;

jLabel5.setText(String.valueOf(total));

bs

Ahora nos toca complementar nuestro codigo manejando excepciones y algunos errores que
puedan ocasionarse agregamos el manejador de eventos y nuestro cddigo final queda de la
forma siguiente.

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
int total,vall,val2;
try{
vall=Integer.valueOf(jTextField1l.getText());
val2=Integer.valueOf(jTextField2.getText());
total=vall+val2;
jLabel5.setForeground(new java.awt.Color(0, 0, 0));
jLabel5.setText(String.valueOf(total));
}catch(Exception e){
jLabel5.setForeground(new java.awt.Color(255, 0, 51));
jLabel5.setText("Error"+e.getMessage());
b
bs

Donde se verifica si introduce algun valor que no corresponde al proceso para operar los datos y
se enviara un mensaje el se muestra en un Jlabel que es el elemento que procesara en este caso
las salidas.

Eventos

Cuando estamos trabajando GUI's el reconocer como se comporta nuestro cddigo es importante
por ello se debe de identificar claramente los eventos asociados a ello ya que Java al estar
orientado a eventos no provee la facilidad de la creacidn o trabajo con los ya que no existe una
instruccion o método que controle los eventos, se debe de haber creado desde cero. En el caso
del uso de un IDE se nos facilita el trabajo ya que ya estan creadas plantillas con los cddigos
para el uso de los eventos, donde solo debemos agregar las acciones (similar a la programacion
en VB.NET).

Como se comporta un evento en java.
Un evento de Java se implementa de la siguiente forma:
e libreria AWT (import java.awt.event).
e un listener (es el objeto que captura el evento, ademas son clases auxiliares).
e Un método asociado al listener para definir las instrucciones que se ejecutaran cuando
dicho evento se desencadene.

Ejemplo Método que realiza “X” accion

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
jLabell.setText("Hola Mundo");

bs

Listener del control .

| jButtonl.addMouselListener(new java.awt.event.MouseAdapter() {

Aplicaciones Cliente Servidor Pagina 45.

Tec. En Ingenieria en Sistemas

public void mouseClicked(java.awt.event.MouseEvent evt) {
jButton1MouseClicked(evt);
b
1)

La parte de los desencadenadores de eventos o los listener es algo que se debe de tomar en
cuenta ya que ellos son los que permiten la manipulacion de todas las acciones que se puedan
dar en una aplicacion GUI, en Swing se genera un variado set de eventos, en la siguiente tabla
se resumen los mas comunes con sus respectivos "escuchadores”.

Ejemplos de eventos y sus escuchadores

Accién que gatilla un evento Tipo de escuchador

El usuario hace un click, presiona Return | ActionListener
en un area de texto o selecciona un menu

El usuario escoge un frame (ventana principal) WindowListener

El usuario hace un clic sobre una componente Mouselistener

El usuario pasa el mouse sobre una componente | MouseMotionListener
Una componente se hace visible ComponentListener
Una componente adquiere el foco del teclado FocuslListener
Cambia la seleccion en una lista o tabla ListSelectionListener

El modelo de creacion de interfaces de java es un modelo un tanto complejo por la
implementacion de diferentes clases para la manipulacion de los controles pero el resultado que
se obtiene depende de planear previamente que elementos poseera nuestra GUI ademds de los
eventos importantes y que salidas manipularemos al tomar en cuenta estos 3 aspectos se nos
facilitara en gran medida el proceso de desarrollo ademas de tener una herramienta adecuada
para facilitar la codificacion.

Tarea.
e Investigar que funciones me permite cambiar el aspecto de un control (color de fondo,
color de letra, tamanfo etc.).
e Realice un boceto de creacidon de una GUI de Java, tomando en cuenta los controles que
utilizara, los eventos necesarios, los métodos que se asociaran a los diferentes eventos y
los datos que manipulara cada control.

Aplicaciones Cliente Servidor Pagina 46.

Tec. En Ingenieria en Sistemas

Escuela Especializada y 2
en Ingenieria , , . Em\l
ITCA vz Ferrne Guia Practica No 5 v/
Desarrollo de Interfaces. —
OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Crear GUI en Java.
e Crear Métodos para la manipulacion de datos de las GUI.

PROCEDIMIENTO

Ya que conocemos las ventajas y caracteristicas que NetBeans provee para la creacion de GUI,
nos facilitara la creacion de una pequefia aplicacion del calculo de algunas operaciones
matematicas (operaciones aritméticas basicas, raices cuadradas, potencias); lo primero es
realizar un boceto o planeacién previa de lo que necesitamos definiremos lo siguiente.

2 cajas de texto.

Checkbox para cada operacion.

Labels necesarios.

Un control Button Group.

O O O O

C] BE
Calculadora

]
0

) suma ' multiplicacién

) resta) division

O réiz) potencia

Total

Esta es el ejemplo del formulario con los controles ya posicionados, la légica que definiremos

para el formulario es que al dar clic sobre cualquiera de los botones de radio se realizara la
operacion definida tomando.

Entonces el cédigo quedara de la siguiente forma.

private void jRadioButton1MouseClicked(java.awt.event.MouseEvent evt) {
vall=Double.valueOf(jTextField1.getText());
val2=Double.valueOf(jTextField2.getText());

total=vall+val2;

jLabel3.setText(String.valueOf(total));

b

private void jRadioButton3MouseClicked(java.awt.event.MouseEvent evt) {
total=valil*val2;

jLabel3.setText(String.valueOf(total));
b

private void jRadioButton2MouseClicked(java.awt.event.MouseEvent evt) {

Aplicaciones Cliente Servidor Pagina 47.

Tec. En Ingenieria en Sistemas

total=vall-val2;
jLabel3.setText(String.valueOf(total));

b

private void jRadioButton4MouseClicked(java.awt.event.MouseEvent evt) {
total=vall/val2;
jLabel3.setText(String.valueOf(total));

b

private void jRadioButton5MouseClicked(java.awt.event.MouseEvent evt) {
total=Math.sqgrt(vall);
jLabel3.setText(String.valueOf(total));

b

private void jRadioButton6MouseClicked(java.awt.event.MouseEvent evt) {
total=Math.pow(vall,val2);
jLabel3.setText(String.valueOf(total));

bs

Hay que tomar algo muy en cuenta por que se usa un control radio group y por que no aparece
nuestra interfase este control se utiliza para asociar todos los radio buton para que se activen o
se desactiven al dar clic sobre ellos o sea para que dos radios no estén seleccionados a la vez.

:jRadioButton6 [JRadioButton] - Proper.. [» x

Properties Binding Events Code
= Propetties i
action [:]
hackground [0 [238,233,216) [:]
buttonGroun buttonGroupl w []

Para asociar los radios a este control lo que haremos es asociar la propiedad buttonGroup en la
paleta de propiedades para cada radio que tengamos en nuestro formulario.

Con los cédigos y ejemplos definidos podremos crear interfaces dependiendo de la complejidad
debemos de ser mas cuidadosos a la hora de plantear que es lo que necesitaremos desarrollar.

Ejercicios.
e Con el ejemplo creado validad todas las entradas de las cajas de texto y enviar los
mensajes necesarios(errores, excepciones)
e Modificar el ejemplo de la clase para operar por medio de botones.

Aplicaciones Cliente Servidor Pagina 48.

Tec. En Ingenieria en Sistemas

iali o i
e R Ingeneria Introd _,Clas:e N° 6 odia ISP L)
ntroduccion a la Tecnologia JS L1
I'TCA v rerane 9 e

| OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Conocer la Tecnologia JSP, su uso y métodos de programacion

DESARROLLO

INTRODUCCION A JSP.

Java Server Pages (JSP) Es una tecnologia similar a los Servlets que ofrece una conveniente
forma de agregar contenido dindmico a un archivo HTML por utilizar cédigo escrito en Java
dentro del archivo utilizando tags especiales que son procesados por el servidor Web antes de
enviarlos al cliente. La posibilidad de usar APIs de Java hacen de JSP una poderosa herramienta
de desarrollo ya que se obtiene la ventaja de la programacién orientada al objeto, como creacion
de clases especiales llamadas componentes o Java Beans, independencia de la plataforma propia
de la programacion en Java, etc.

La diferencia entre Servlets y JSP es que los Servlets son clases que deben implementar la clase
abstracta HttpServlet, en especial el método doGet() o doPost() y deben ser previamente
compilados, mientras que los archivos JSP contienen cddigo Java entre codigo HTML utilizando
los simbolos <% y %>. Por esto un archivo JSP debe ser interpretado por el servidor al
momento de la peticidon por parte del usuario.

Un servidor Web para Servlets y JSP como Jakarta Tomcat es una aplicacidn escrita en Java que
mantiene una Java Virtual Machine en ejecucion para compilar los archivos JSP y ejecutar
Servlets. El tiempo que demora en la compilacion inicial de un JSP es contrarrestado por su
rapido tiempo de respuesta posterior ya que para procesar un requerimiento sélo tiene que
levantar un proceso liviano o thread dentro de la misma JVM para ejecutar un archivo .class y no
crear un proceso pesado como un intérprete de Perl para programas CGI.

Como se puede deducir de esto, en realidad la tecnologia JSP en si no es nueva, si no que sélo
es una forma distinta y mas facil para crear Servlets.

Plantilla de Texto: HTML estaticoEn muchos casos, un gran porcentaje de nuestras paginas JSP
consistira en HTML estatico, conocido como plantilla de texto. En casi todos lo aspectos, este
HTML se parece al HTML normal, sigue la mismas reglas de sintaxis, y simplemente "pasa a
través" del cliente por el servlet creado para manejar la pagina. No sélo el aspecto del HTML es
normal, puede ser creado con cualquier herramienta que usemos para generar paginas Web. Por
ejemplo, podriamos utilizar Homesite de Allaire o Microsoft Frontpage.

La unica excepcion a la regla de que "la plantilla de texto se pasa tal y como es" es que, si
queremos tener "<%" en la salida, necesitamos poner "<\%" en la plantilla de texto.

ELEMENTOS DE SCRIPT

JSP Los elementos de script nos permiten insertar cédigo Java dentro del servlet que se
generara desde la pagina JSP actual. Hay tres formas:

Expresiones de la forma <%= expresion %> que son evaluadas e insertadas en la salida.
Scriptlets de la forma <% cddigo %> que se insertan

dentro del método service del servlet, y Declaraciones de la forma <%! cddigo %> que se
insertan en el cuerpo de la clase del servlet, fuera de

cualquier método existente.

Expresiones JSP

Aplicaciones Cliente Servidor Pagina 49.

Tec. En Ingenieria en Sistemas

Una expresion JSP se usa para insertar valores Java directamente en la salida. Tiene la siguiente
forma:

<%= expresion Java %>

La expresion Java es evaluada, convertida a un string, e insertada en la pagina. Esta evaluacion
se ejecuta durante la ejecucién (cuando se solicita la pagina) y asi tiene total acceso a la
informacién sobre la solicitud. Por ejemplo, esto muestra la fecha y hora en que se solicitd la
pagina:

Current time: <%= new java.util.Date() %>

Para simplificar estas expresiones, hay un gran nimero de variables predefinidas que podemos
usar. Estos objetos implicitos se describen mas adelante con mas detalle, pero para el propodsito
de las expresiones, los mas importantes son:

1. request, el HttpServietRequest;

2. response, el HttpServletResponse;

3. session, el HttpSession asociado con el request (si existe), y

4. out, el PrintWriter (una version con buffer del tipo JspWriter) usada para enviar la
salida al cliente.

Aqui tenemos un ejemplo:

Tu Servidor es: <%= request.getRemoteHost() %>

Scriptlets JSP

Si queremos hacer algo mas complejo que insertar una simple expresion, los scriptlets JSP nos
permiten insertar codigo arbitrario dentro del método servlet que sera construido al generar la
pagina. Los Scriptlets tienen la siguiente forma:

<% Cddigo Java %>

Los Scriptlets tienen acceso a las mismas variables predefinidas que las expresiones. Por eso,
por ejemplo, si queremos que la salida aparezca en la pagina resultante, tenemos que usar la
variable out:

<%

String queryData = request.getQueryString();
out.printin("Datos Adjuntos al método GET: " + queryData);
%>

Observa que el codigo dentro de un scriptlet se insertara exactamente como esta escrito, y
cualquier HTML estatico (plantilla de texto) anterior o posterior al scriptlet se convierte en
sentencias print. Esto significa que los scriptlets no necesitan completar las sentencias Java, y
los blogues abiertos pueden afectar al HTML estatico fuera de los scriplets. Por ejemplo, el
siguiente fragmento JSP, contiene una mezcla de texto y scritplets:

<% if (Math.random() < 0.5) { %>
Tendrds un Buen dia!
<% } else { %>

Tendras un Mal dial

<% } %>

El ejemplo anterior se convertira en algo como esto:

if (Math.random() < 0.5) {
out.printin("Tendras un Buen dia!");

Aplicaciones Cliente Servidor Pagina 50.

Tec. En Ingenieria en Sistemas

¥ else {
out.printin("Tendras un Mal dia!");

bs

Declaraciones JSP

Una declaracién JSP nos permite definir métodos o campos que seran insertados dentro del
cuerpo principal de la clase servilet (fuera del método service que procesa la peticion). Tienen la
siguiente forma:

<%! Cbdigo Java%>

Como las declaraciones no generan ninguna salida, normalmente se usan en conjunciéon con
expresiones JSP o escriptlets. Por ejemplo, aqui tenemos un fragmento de JSP que imprime el
numero de veces que se ha solicitado la pagina actual desde que el servidor se arranco (o la
clase del servlet se modificé o se recargd):

<%! private int accessCount = 0; %>
Accesos a la Pagina desde que el Servidor Inicio:
<%= ++accessCount %>

Directivas JSP

Una directiva JSP afecta a la estructura general de la clase servlet. Normalmente tienen la
siguiente forma:

<%@ directive attribute="value" %>

Sin embargo, también podemos combinar multiples selecciones de atributos para una sola
directiva, de esta forma:

<% @ directive attributel="valuel"
attribute2="value2"

attributeN="valueN" %>

Hay dos tipos principales de directivas: page, que nos permite hacer cosas como importar
clases, personalizar la superclase del servlet, etc. einclude, que nos permite insertar un fichero
dentro de la clase serviet en el momento que el fichero JSP es traducido a un servlet.

La directiva page

La directiva page nos permite definir uno o mas de los siguientes atributos sensibles a las
mayusculas:

import="package.class" o import="package.classl,...,package.classN".

Esto nos permite especificar los paquetes que deberian ser importados. Por ejemplo:

<% @ page import="java.util.*" %>

El atributo import es el Unico que puede aparecer multiples veces.

contentType="MIME-Type"

Aplicaciones Cliente Servidor Pagina 51.

Tec. En Ingenieria en Sistemas

Esto especifica el tipo MIME de la salida. El valor por defecto es text/html. Por ejemplo, la
directiva:

<%@ page contentType="text/plain" %>

tiene el mismo valor que el scriptlet

<% response.setContentType("text/plain"); %>

Ejemplol.jsp

<HTML><HEAD><TITLE>Utilizando Java Server Pages</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE"
VLINK="#551A8B" ALINK="#FF0000">

<CENTER>

<TABLE BORDER=5 BGCOLOR="#EF8429">

<TR><TH CLASS="TITLE">

Utilizando Java Server Pages</TABLE>

</CENTER>

<P>

Algunos Contenidos Dinamicos utilizando mecanismos de JSP:

Expresién.

Tu Servidor es: <%= request.getRemoteHost() %>.

Un Scriptlet.

<% out.printIn("Parametros Adjuntos al Método GET: " +
request.getQueryString()); %>

Declaracién.

<%! public int CUENTA = 0; %>

Numero de Accesos a esta Pagina desde que inicié Servidor: <%= ++CUENTA %>
Directiva.

<%@ page import = "java.util.*" %>

Current date: <%= new Date() %>

</BODY>

</HTML>

La directiva include JSP

Esta directiva nos permite incluir ficheros en el momento en que la pagina JSP es traducida a un
servlet. La directiva se parece a esto:

<%@ include file = "url relativa" %>

La URL especificada normalmente se interpreta como relativa a la pagina JSP a la que se refiere,
pero, al igual que las URLs relativas en general, podemos decirle al sistema que interpreta la
URL relativa al directorio home del servidor Web empezando la URL con una barra invertida. Los
contenidos del fichero incluido son analizados como texto normal JSP, y asi pueden incluir HTML
estatico, elementos de script, directivas y acciones.

Por ejemplo, muchas sites incluyen una pequena barra de navegacion en cada pagina. Debido a
los problemas con los marcos HTML, esto normalmente se implementa mediante una pequefa
tabla que cruza la parte superior de la pagina o el lado izquierdo, con el HTML repetido para
cada pagina de la site. La directiva include es una forma natural de hacer esto, ahorrando a los
desarrolladores el mantenimiento engorroso de copiar realmente el HTML en cada fichero
separado. Aqui tenemos un cédigo representativo:

<HTML>

Aplicaciones Cliente Servidor Pagina 52.

Tec. En Ingenieria en Sistemas

<HEAD>

<TITLE>Ejemplo de JavaServer Pages Utilizando Include</TITLE>
</HEAD>

<BODY>

<%@ include file="Otroejemplo.jsp" %>

</BODY>

</HTML>

Variables Predefinidas

Para simplificar el cédigo en expresiones y scriplets JSP, tenemos ocho variables definidas
automaticamente, algunas veces llamadas objetos implicitos. Las variables disponibles son:
request, response, out, session, application, config, pageContext, y page. A continuaciéon una
descripcion de aquellas mas utilizadas:

+ request

Este es el HttpServletRequest asociado con la peticién, y nos permite mirar los parametros de la
peticion (mediante getParameter), el tipo de peticiéon (GET, POST, HEAD, etc.), y las cabeceras
HTTP entrantes (cookies, Referer, etc.).

* response

Este es el HttpServiletResponse asociado con la respuesta al cliente. Observa que, como el
stream de salida (ver out mas abajo) tiene un buffer, es legal seleccionar los cddigos de estado
y cabeceras de respuesta, aunque no esta permitido en los servlets normales una vez

que la salida ha sido enviada al cliente.

- out

Este es el PrintWriter usado para enviar la salida al cliente. Sin embargo, para poder hacer Uutil el
objeto response (ver la seccién anterior), esta es una version con buffer de PrintWriter llamada
JspWriter.

Ejemplo:

FormularioSimple.html

<HTML><head> <title>Ejemplo Utilizando JSP</title></head>
<BODY><CENTER> </CENTER>
<h1 align="center">Ejemplo Utilizando JSP</h1>

<h3 align="center">Programacién IV</h3>

<hr>

<p>

<H3>Por Favor, Introduzca la siguiente Informacion</H3>

<FORM action="RecuperaDatos.jsp" method="get">

Nombre y Apellido: <INPUT type="text" name="Nombre" size="20">
<INPUT type="text" name="Apellido" size="20">

Sexo: <INPUT type="radio" checked name="sexo" value="Masculino">Masculino
<INPUT type="radio" name="sexo" value="Femenino">Femenino
<INPUT type="radio" name="sexo" value="Alienigena">Alienigena

<P>

¢Cual es tu lenguaje de Programacion favorito?:

<SELECT name="Lenguaje">

<option>Visual Basic</option>

<option>Visual FoxPro</option>

<option>Visual C</option>

<option>Delphi</option>

<option>Java</option>

<option>Power Builder</option>

Aplicaciones Cliente Servidor Pagina 53.

Tec. En Ingenieria en Sistemas

<option>Otro</option>
</SELECT>

Los datos del formulario anterior, son enviados al siguiente archivo jsp:

RecuperaDatos.jsp

<HTML><HTML><head> <title>Resultado del Ejemplo JSP</title></head>
<BODY>

<CENTER> </CENTER>
<h1 align="center">Resultado del Ejemplo JSP</h1>

<hr>

<%

// Recuperando las variables del formulario

String Nombre = request.getParameter("Nombre");

String Apellido = request.getParameter("Apellido");

String sexo = request.getParameter("sexo");

String Lenguaje = request.getParameter("Lenguaje");

%>

<%-- Imprimiendo las variables --%>

<H2>Saludos, <%=Nombre%> <%=Apellido%>!</H2>

Tu Sexo es <i><%=sex0%></i>. Tu lenguaje de Programacion Preferido es:
<%=Lenguaje%>, Excelente Eleccion.

</BODY></HTML>

Aplicaciones Cliente Servidor Pagina 54.

Tec. En Ingenieria en Sistemas

Escuela Especializada
en Ingenieria gm
I'TCA vz Ferane Guia Practica No 6 o)
Introduccion a Java Server Pages =

| OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Utilizar el Lenguaje de Java Servlets para crear Java Server Pages.
e \Verificar las ventajas que ofrece JSP sobre los lenguajes de programacion orientados al
Web, incluyendo los mismos Servlets.
e Utilizar Expresiones de Java en los llamados Scriptles.
e Utilizar Directivas de JSP en las aplicaciones para el Web.

PROCEDIMIENTO

éQué es ISP?

Java Server Pages (JSP) es una tecnologia que nos permite mezclar HTML estatico con HTML
generado dindmicamente. Muchas paginas Web que estan construidas con programas CGI son
casi estaticas, con la parte dindmica limitada a muy pocas localizaciones. Pero muchas
variaciones CGI, incluyendo los servlets, hacen que generemos la pagina completa mediante
nuestro programa, incluso aunque la mayoria de ella sea siempre lo mismo. JSP nos permite
crear dos partes de forma separada. Aqui tenemos un ejemplo:

EjemploSencillo.jsp

<HTML><head> <title>JSP mis inicios</title><head>

<h1>Ejemplo Sencillo de JSP <h1><hr><BODY><P>

<%

// Este es un comentario

out.printin("<MARQUEE>FINALIZANDO LAS CLASES DE PROGRAMACION 1V, "+
"ESTA MARQUESINA ESTA HECHA CON JSP</MARQUEE>");

% ></BODY></HTML>

¢Cudles son las Ventajas de JSP?
- Contra Active Server Pages (ASP).

ASP es una tecnologia similar de Microsoft. Las ventajas de JSP estan duplicadas. Primero, la
parte dindmica estd escrita en Java, no en Visual Basic, otro lenguaje especifico de MS, por eso
es mucho mas poderosa y facil de usar. Segundo, es portable a otros sistemas operativos y
servidores Web

» Contra los Servlets.

JSP no nos da nada que no pudiéramos en principio hacer con un servlet. Pero es mucho mas
conveniente escribir (y modificar!) HTML normal que tener que hacer un billén de sentencias
printin que generen HTML. Ademds, separando el formato del contenido podemos poner
diferentes personas en diferentes tareas: los expertos en disefio de paginas Web pueden
construir el HTML, dejando espacio para que los programadores de servlets inserten el contenido
dinamico.

+ Contra Server-Side Includes (SSI).

SSI es una tecnologia ampliamente soportada que incluye piezas definidas externamente dentro
de una pagina Web estatica. JSP es mejor

Aplicaciones Cliente Servidor Pagina 55.

Tec. En Ingenieria en Sistemas

porque nos permite usar servlets en vez de un programa separado para generar las partes
dinamicas. Ademas, SSI, realmente esta disefiado para inclusiones sencillas, no para programas
"reales" que usen formularios de datos, hagan conexiones a bases de datos, etc.

- Contra JavaScript.

JavaScript puede generar HTML dinamicamente en el cliente. Este una capacidad util, pero sélo maneja
situaciones donde la informacién dinamica esta basada en el entorno del cliente. Con la excepcion de
las cookies, el HTTP y el envié de formularios no estan disponibles con JavaScript. Y, como se ejecuta
en el cliente, JavaScript no puede acceder a los recursos en el lado del servidor, como bases de datos,
catalogos, informacion de precios, etc.

Normalmente daremos a nuestro fichero una extension .jsp, y normalmente lo instalaremos en el mismo
sitio que una pagina Web normal.

Aunque lo que escribamos frecuentemente se parezca a un fichero HTML normal en vez de un servlet,
detras de la escena, la pagina JSP se convierte en un servlet normal, donde el HTML estatico
simplemente se imprime en el stream de salida estandar asociado con el método service del servlet.
Esto normalmente sélo se hace la primera vez que se solicita la pagina, y los desarrolladores pueden
solicitar la pagina ellos mismos cuando la instalan si quieren estar seguros de que el primer usuario real
no tenga un retardo momentaneo cuando la pagina JSP sea traducida a un servlet y el servlet sea
compilado y cargado. Observa también, que muchos servidores Web nos permiten definir alias para que
una URL que parece apuntar a un fichero HTML realmente apunte a un servlet o a una pagina JSP.

Ademas del HTML normal, hay tres tipos de construcciones JSP que embeberemos en una pagina:
elementos de script, directivas y acciones.

Los elementos de script nos permiten especificar codigo Java que se convertira en parte del servlet
resultante, las directivas nos permiten controlar la estructura general del servlet, y las acciones nos
permiten especificar componentes que deberian ser usados, y de otro modo controlar el comportamiento
del motor JSP. Para simplificar los elementos de script, tenemos acceso a un numero de variables
predefinidas como request, response y out. Ejemplo:

Fomulario.html

<HTML>

<BODY bgcolor="#B9E3FF">

<H1>Por favor, Introduzca un listado de Nombre</H1>
<FORM action="MultiParametros.jsp" method="get">
<INPUT type="text" name="nonmbre" size="20">

<INPUT type="text" name="nombres" size="20">

<INPUT type="text" name="nombres" size="20">

<INPUT type="text" name="nombres" size="20">

<INPUT type="text" name="nombres" size="20"><p>

<INPUT type="submit"> </p>

</FORM>

</BODY>

</HTML>

MultiParametros.jsp

<HTML>

<BODY bgcolor="#B9E3FF">

Los nombres introducidos son:
<hr>

<PRE>

<%

/I Obteniendo los valores de los nombres

String arraynombres[] = request.getParameterValues("nombres");
out.printin("<Lo>");

Aplicaciones Cliente Servidor Pagina 56.

Tec. En Ingenieria en Sistemas

for (int i=0; i < arraynombres.length; i++)
out.printin("<i>"+arraynombresi]);

out.printin("</Lo>");
%>

</PRE>

</BODY>
</HTML>

El siguiente archivo .jsp Crea un formulario y se auto-envia los parametros que son evaluados por el
mismo archivo jsp, ya que algunos de estos son obligatorios que el usuario los introduzca.

CamposRequeridos.jsp

<HTML>
<BODY>
<%
String Nombre = request.getParameter("nombre");
if (Nombre == null) Nombre ="";
String Apellido = request.getParameter("apellido");
if (Apellido == null) Apellido = "";
String Direccion = request.getParameter("direccion");
if (Direccion == null) Direccion = "";
String Ciudad = request.getParameter("ciudad");
if (Ciudad == null) Ciudad = "";
String Departamento = request.getParameter("departamento");
if (Departamento == null) Departamento = "";
String Telefono = request.getParameter("telefono");
if (Telefono == null) Telefono = "";
String formatOption = request.getParameter("formatoption”);
if (formatOption == null) formatOption = "";
I/l Algunos de los parametros son requeridos,Damos un estilo
/I por defecto para estos datos"requeridos”
String NombreColorRequerido = "black”;
String ApellidoColorRequerido = "black";
String TelefonoColorRequerido = "black™;
String ColorNotificarRequerido = "red";
/I Cuando esta pagina es ejecutada, Realiza una peticion HTTP GET

// Pero en la opcion METHOD del tag FORM, El formulario
/l Envia los datos por HTTP POST.
/I Cuando el boton submit es presionado...

if (request.getMethod().equals("POST"))

boolean CamposRequeridosPresentes = true;
/I Verificamos si los campos requeridos estan en blanco
if (Nombre.length() == 0)

NombreColorRequerido = ColorNotificarRequerido;
CamposRequeridosPresentes = false;

}
if (Apellido.length() == 0)

ApellidoColorRequerido = ColorNotificarRequerido;
CamposRequeridosPresentes = false;

1
if (Telefono.length() == 0)

{

Aplicaciones Cliente Servidor Pagina 57.

Tec. En Ingenieria en Sistemas

TelefonoColorRequerido = ColorNotificarRequerido;
CamposRequeridosPresentes = false;

/I Si el usuario no introdujo los campos requeridos, digamosle que estan
/l marcados en un color diferente.

if (ICamposRequeridosPresentes)

Usted No ha introducido todos los campos requeridos.
 Debe introducir

todos los campos que estan marcados en color <font color="<%=ColorNotificarRequerido%>">
Rojo.

<%

}
else
{
// Desplegar el nombre y Direccién que ha sido introducida
String nameString = Nombre+" "+Apellido+

"
"+ Direccion+"
"+Ciudad+", "+
Departamento+".
 Teléfono: "+Telefono;

out.printin("El Registro Actual es:<P>");

if (formatOption.equals("Negrita"))

out.printin(""+nameString+"");
else if (formatOption.equals("Cursiva"))

out.printin("<I>"+nameString+"</I>");
}

else

{

out.printin(nameString);

out.printin("<P>");
}
}
%>

<FORM action="CamposRequeridos.jsp" method="POST">

<TABLE>

<TR><TD>Nombre:<TD><INPUT type="text" name="nombre" value="<%=Nombre%>">

<TD><FONT color="<%=NombreColorRequerido%>">requerido
<TR><TD>Apellido:<TD><INPUT type="text" name="apellido" value="<%=Apellido%>">

<TD><FONT color="<%=ApellidoColorRequerido%>">requerido
<TR><TD>Direccion:<TD><textarea rows="4" name="direccion" cols="26"><%=Direccion%></textarea>
<TR><TD>Ciudad<TD><INPUT type="text" name="ciudad" value="<%=Ciudad%>">
<TR><TD>Departamento:<TD><INPUT type="text" name="departamento"
value="<%=Departamento%>">

<TR><TD>Teléfono de Contacto:<TD><INPUT type="text" name="telefono" value="<%=Telefono%>">
<TD><FONT color="<%=TelefonoColorRequerido%>">requerido

</TABLE>

<pP>

Opciones de Formato:

<SELECT name="formatoption">

<OPTION value="Normal">Normal</OPTION>

<OPTION value="Negrita">Negrita</OPTION>

<OPTION value="Cursiva">Cursiva</OPTION>

</SELECT>

<p>

<INPUT type="submit" value="Hacer Clic Aqui">

</FORM>

Aplicaciones Cliente Servidor Pagina 58.

Tec. En Ingenieria en Sistemas

</BODY>
</HTML>

DIRECTIVAS JSP
¢Qué es la Directiva Include?

La directiva include se usa para insertar un fichero dentro de una pagina JSP cuando se compila la
pagina JSP. El texto del fichero incluido se afiade a la pagina.

¢ Qué clases de ficheros se pueden incluir?

El fichero incluido puede ser un fichero JSP, un fichero HTML, o un fichero de texto. También ser un
fichero de codigo escrito en lenguaje Java.

Hay que ser cuidadoso en que el fichero incluido no contenga las etiquetas <html>, </html>, <body>, or
</body>. Porque como todo el contenido del fichero incluido se afade en esa localizacion del fichero
JSP, estas etiquetas podrian entrar en conflicto con las etiquetas similares del fichero JSP.

Incluir Ficheros JSP

Si el fichero incluido es un fichero JSP, las etiquetas JSP son analizadas y sus resultados se incluyen
(junto con cualquier otro texto) en el fichero JSP.

Sélo podemos incluir ficheros estaticos. Esto significa que el resultado analizado del fichero incluido se
afiade al fichero JSP justo donde esta situada la directiva. Una vez que el fichero incluido es analizado y
afiadido, el proceso continua con la siguiente linea del fichero JSP llamante.

¢Qué es un fichero Estatico?

Un include estatico significa que el texto del fichero incluido se afiade al fichero JSP. Ademas en
conjuncion con otra etiqueta JSP, <jsp:include>: podemos incluir ficheros estaticos o dinamicos:

¢ Un fichero estatico es analizado y si contenido se incluye en la pagina JSP llamante.
e Un fichero dinamico actia sobre la solicitud y envia de vuelta un resultado que es incluido en la
pagina JSP.

¢ Cual es la Sintaxis para Incluir un Fichero?

Podemos incluir un fichero en la localizacién especifica del fichero JSP usando la directiva include con la
siguiente sintasis:

"<%@ include file="URL" %>

Aqui la URL puede ser una URL relativa indicando la posicion del fichero a incluir dentro del servidor.
Accion jsp:include

Esta accién nos permite insertar ficheros en una pagina que esta siendo generada. La sintaxis se
parece a esto:

<jsp:include page="relative URL" flush="true" />

Al contrario que la directiva include, que inserta el fichero en el momento de la conversion de la pagina
JSP a un Servlet, esta accion inserta el fichero en el momento en que la pagina es solicitada. Esto se
paga un poco en la eficiencia, e imposibilita a la pagina incluida de contener cédigo JSP general (no
puede seleccionar cabeceras HTTP, por ejemplo), pero se obtiene una significante flexibilidad. Por
ejemplo, aqui tenemos una pagina JSP que inserta cuatro puntos diferentes dentro de una pagina Web

Aplicaciones Cliente Servidor Pagina 59.

Tec. En Ingenieria en Sistemas

"Noticias de Ultima Hora?". Cada vez que cambian las lineas de cabeceras, los autores soélo tienen que
actualizar los cuatro ficheros, pero pueden dejar como estaba la pagina JSP principal.

Noticias.jsp

<HTML>

<HEAD>

<TITLE>Noticias Frescas</TITLE>

</HEAD>

<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE"
VLINK="#551A8B" ALINK="#FF0000">

<CENTER>

<TABLE BORDER=5 BGCOLOR="#EF8429">

<TR><TH CLASS="TITLE">

Ultimas Noticias en t JspNoticias.com</TABLE>
</CENTER>

<p>

Este es un Resumen de las Noticias Mas Recientes:

<jsp:include page="noticias/Iltem1.html" flush="true"/>
<jsp:include page="noticias/ltem2.html" flush="true"/>
<jsp:include page="noticias/Iltem3.html" flush="true"/>
<jsp:include page="noticias/lItem4.html" flush="true"/>

</BODY>

</HTML>

Para que este archivo pueda ejecutarse, debe crear en un directorio virtual llamando “noticias” los
archivos item1, item2, item3, item4 con extension HTML o puede acceder a cualquier archivo de texto
cambiando el valor del atributo page de Noticias.jsp.

EJERCICIOS PROPUESTOS

1. Crear un formulario que pida Nombre, Apellido, Direccion, Teléfono, Direcciéon de Email, Fecha de
Nacimiento, Pasatiempos Favoritos. Estos seran leidos por un archivo JSP, que desplegara los
parametros recibidos (utilizar método POST).

2. Crear una pagina JSP, donde puedas incluir en una tabla, el contenido de cuatro archivos HTML, uno
en cada celda, como se muestra en la figura.

Archivo1.html Archivo2.html

Archivo3.html Archivo4.html

3. Realizar el ejercicio #2 de la guia practica 8 utilizando JSP, el enunciado es el siguiente:

Crear un formulario en HTML que simule la pantalla de acceso a una aplicacién Web con acceso
restringido, el formulario pedira al usuario: Su nombre de Usuario y Contrasefia (el formulario debe estar
validado de tal forma que obligue al usuario a escribir los datos requeridos). Estos datos seran enviados
a una pagina JSP que validara la entrada a la aplicacion. Esta contendra 2 arreglos uno de

Usuarios y otro de Contrasefas, de tal forma que Usuario[2] poseera su clave en contrasena[2]. Si el
usuario y contrasefia son validos la pagina mostrara un mensaje de bienvenida al usuario, de lo
contrario desplegara un mensaje de Usuario y/o contrasefia no validos.

Tomar como datos de los arreglos:

e USUARIO {Administrador, Usuario1, Usu02, Operador}
¢ PASSWORD {admin0101, nimodo, clave02, ok}

Aplicaciones Cliente Servidor Pagina 60.

Tec. En Ingenieria en Sistemas

Escuela Especializada

en Ingenieria ES)‘I
ITCA wzrFerADE Clase N° 7 L ==}

JSP con bases de datos =

| OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Conocer aspectos de Seguridad y conexidén de BD para Internet

DESARROLLO

JSP CON BASES DE DATOS.
Mover el Cursor en una Hoja de Resultados

Una de las nuevas caracteristicas del API JDBC 2.0 es la habilidad de mover el cursor en una
hoja de resultados tanto hacia atrds como hacia adelante. También hay métodos que nos
permiten mover el cursor a una fila particular y comprobar la posiciéon del cursor. La hoja de
resultados Scrollable hace posible crear una herramienta GUI (Interface Grafico de Usuario) para
navegar a través de ella, lo que probablemente serd uno de los principales usos de esta
caracteristica. Otro uso sera movernos a una fila para actualizarla.

Antes de poder aprovechar estas ventajas, necesitamos crear un objeto ResultSet Scrollable:

Statement stmt = con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_READ_ONLY);
ResultSet srs = stmt.executeQuery("SELECT NOM_PROD, PRECIO FROM PRODUCTOS");

Este codigo es similar al utilizado anteriormente, excepto en que afiade dos argumentos al
método createStatement. El primer argumento es una de las tres constantes afiadidas al API
ResultSet para indicar el tipo de un objeto ResultSet: TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE, y TYPE_SCROLL_SENSITIVE. El segundo argumento es una
de las dos constantes de ResultSet para especificar si la hoja de resultados es de sélo lectura o
actualizable: CONCUR_READ_ONLY y CONCUR_UPDATABLE. Lo que debemos recordar aqui
es que si especificamos un tipo, también debemos especificar si es de sélo lectura o actualizable.
También, debemos especificar primero el tipo, y como ambos parametros son int, el compilador
no comprobara si los hemos intercambiado.

Especificando la constante TYPE_FORWARD_ONLY se crea una hoja de resultados no
desplazable, es decir, una hoja en la que el cursor sdélo se mueve hacia adelante. Si no se
especifican constantes para el tipo y actualizacién de un objeto ResultSet, obtendremos
automaticamente una TYPE_FORWARD_ONLY y CONCUR_READ_ONLY.

Obtendremos un objeto ResultSet desplazable si utilizamos wuna de estas
constantes: TYPE_SCROLL_INSENSITIVE o TYPE_SCROLL_SENSITIVE. La diferencia entre
estas dos es si la hoja de resultados refleja los cambios que se han hecho mientras estaba
abierta y si se puede llamar a ciertos métodos para detectar estos cambios. Generalmente
hablando, una hoja de resultados TYPE_SCROLL_INSENSITIVE no refleja los cambios hechos
mientras estaba abierta y en una hoja TYPE_SCROLL_SENSITIVE si se reflejan. Los tres tipos
de hojas de resultados haran visibles los resultados si se cierran y se vuelve a abrir. En este
momento, no necesitamos preocuparnos de los puntos delicados de las capacidades de un objeto
ResultSet, entraremos en mas detalle mas adelante. Aunque deberiamos tener en mente el
hecho de que no importa el tipo de hoja de resultados que especifiquemos, siempre estaremos
limitados por nuestro controlador de base de datos y el driver utilizados.

Aplicaciones Cliente Servidor Pagina 61.

Tec. En Ingenieria en Sistemas

Una vez que tengamos un objeto ResultSet desplazable, srs en el ejemplo anterior, podemos
utilizarlo para mover el cursor sobre la hoja de resultados. Recuerda que cuando creabamos un
objeto ResultSet anteriormente, tenia el cursor posicionado antes de la primera fila. Incluso
aunque una hoja de resultados se seleccione desplazable, el cursor también se posiciona
inicialmente delante de la primera fila. En el API JDBC 1.0, la Unica forma de mover el cursor era
llamar al método next. Este método todavia es apropiado si queremos acceder a las filas una a
una, yendo de la primera fila a la Ultima, pero ahora tenemos muchas mas formas para mover el
cursor.

La contrapartida del método next, que mueve el cursor una fila hacia delante (hacia el final de
la hoja de resultados), es el nuevo método previous, que mueve el cursor una fila hacia atras
(hacia el inicio de la hoja de resultados). Ambos métodos devuelven false cuando el cursor se
sale de la hoja de resultados (posicion antes de la primera o después de la ultima fila), lo que
hace posible utilizarlos en un bucle while. Ya hemos utilizado un método next en un bucle
while, pero para refrescar la memoria, aqui tenemos un ejemplo que mueve el cursor a la
primera fila y luego a la siguiente cada vez que pasa por el bucle while. El bucle termina cuando
alcanza la ultima fila, haciendo que el método next devuelva false. El siguiente fragmento de
cédigo imprime los valores de cada fila de srs, con cinco espacios en blanco entre el nombre y el
precio:

Statement stmt = con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery("SELECT NOM_PROD, PRECIO FROM PRODUCTOS");
while (srs.next())

{

String name = srs.getString("NOM_PROD ");

float price = srs.getFloat("PRECIO");

System.out.printin(name + " " + price);

bs

Al igual que en el fragmento anterior, podemos procesar todas las filas de srs hacia atras, pero
para hacer esto, el cursor debe estar detras de la ultima fila. Se puede mover el cursor
explicitamente a esa posicion con el método afterLast. Luego el método previous mueve el
cursor desde la posicion detras de la ultima fila a la Ultima fila, y luego a la fila anterior en cada
interaccion del bucle while. El bucle termina cuando el cursor alcanza la posicién anterior a la
primera fila, cuando el método previous devuelve false.

Statement stmt = con.createStatement(ResultSet. TYPE_SCROLL_INSENSITIVE,
ResultSet. CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery("SELECT NOM_PROD, PRECIO FROM PRODUCTOS");
srs.afterLast();

while (srs.previous())

{

String name = srs.getString("NOM_PROD ");

float price = srs.getFloat("PRECIO");

System.out.printin(name + " " + price);

bs

Se puede mover el cursor a una fila particular en un objeto ResultSet. Los métodos first, last,
beforeFirst, y afterLast mueven el cursor a la fila indicada en sus nombres. El método
absolute moverd el cursor al nimero de fila indicado en su argumento. Si el nimero es
positivo, el cursor se mueve al niumero dado desde el principio, por eso llamar a absolute(1)
pone el cursor en la primera fila. Si el nimero es negativo, mueve el cursor al nimero dado
desde el final, por eso llamar a absolute(-1) pone el cursor en la Ultimafila. La siguiente linea
de codigo mueve el cursor a la cuarta fila de srs:

Aplicaciones Cliente Servidor Pagina 62.

Tec. En Ingenieria en Sistemas

| srs.absolute(4);

Si srs tuviera 500 filas, la siguiente linea de cédigo moveria el cursor a la fila 497:

srs.absolute(-4);

Tres métodos mueven el cursor a una posicion relativa a su posicion actual. Como hemos podido
ver, el método next mueve el cursor a la fila siguiente, y el método previous lo mueve a la fila
anterior. Con el método relative, se puede especificar cuantas filas se movera desde la fila
actual y también la direccion en la que se movera. Un nimero positivo mueve el cursor hacia
adelante el nimero de filas dado; un nimero negativo mueve el cursor hacia atras el nimero de
filas dado. Por ejemplo, en el siguiente fragmente de cddigo, el cursor se mueve a la cuarta fila,
luego a la primera y por ultimo a la tercera:

srs.absolute(4); // cursor esta en la cuarta fila

srs.relative(-3); // cursor esta en la primera fila

srs.relative(2); // cursor esta en la tercera fila

El método getRow permite comprobar el nimero de fila donde esta el cursor. Por ejemplo, se
puede utilizar getRow para verificar la posicién actual del cursor en el ejemplo anterior:

srs.absolute(4);
int rowNum = srs.getRow(); // rowNum deberia ser 4
srs.relative(-3);
int rowNum = srs.getRow(); // rowNum deberia ser 1
srs.relative(2);
int rowNum = srs.getRow(); // rowNum deberia ser 3

Existen cuatro métodos adicionales que permiten verificar si el cursor se encuentra en una
posicion particular. La posicidon se indica en sus nombres: isFirst, isLast, isBeforeFirst,
isAfterLast. Todos estos métodos devuelven un boolean y por lo tanto pueden ser utilizados
en una sentencia condicional. Por ejemplo, el siguiente fragmento de cddigo comprueba si el
cursor estd después de la ultima fila antes de llamar al método previous en un bucle while. Si
el método isAfterLast devuelve false, el cursor no estara después de la ultima fila, por eso se
llama al método afterLast. Esto garantiza que el cursor estara después de la ultima fila antes de
utilizar el método previous en el bucle while para cubrir todas las filas de srs.

if (srs.isAfterLast() == false) {
srs.afterLast();

while (srs.previous()) {

String name = srs.getString("NOM_PROD");
float price = srs.getFloat("PRECIO");
System.out.printin(name + " " + price);

bs

Ejemplo de Java Server Pages Con Bases de Datos.

Este es también un caso comun con elementos de una tabla, sin embargo es también facil de
resolver.

Es necesario recordar primero algunas cosas elementales:

1) Recordar que el nimero de columna en una tabla empieza en 1, esto es que para realizar
alguna operacion por ejemplo la columna edad del ejemplo siguiente, su numero de columna es
la numero 3.

Aplicaciones Cliente Servidor Pagina 63.

Tec. En Ingenieria en Sistemas

2) La operacion que se plantee se puede realizar con todos los renglones de la tabla o con un
solo rengldn de la tabla(del resultset).

3) En el ejemplo se realiza la operacién con todos los renglones de la tabla y no olvidar que se
tiene que usar la instruccién SQL Update para que la nueva informacién se actualice en disco,
recordar que los cambios que se hacen a la tabla, es realmente al resultset, que a su vez es una
tabla o base de datos en la memoria de la maquina del cliente o usuario, y estos cambios hay
que actualizarlos o pasarlos o UPDATE a la base de datos en disco.

El siguiente programa le aumenta 5 a todas las edades.

EjemploGuial3.jsp

<html>

<head>

<title>Ejemplo JSP con BD</title>

</head>

<body bgcolor="#FOFOFF">

<p align="center">Ejemplo de Conexidn con bases
de Datos.</p>

<hr>

<p align="center">8 </p>

<p></p>

<p></p>

<center><table border="1" cellpadding="0" cellspacing="0" bordercolor="#111111"
width="62%">

<tr>

<td width="100%" align="center" height="100">

<p align="center"><u>Los datos de la tabla se
han

actualizado.</u></p>

</td>

</tr>

</table>

</center>

<%@ page import="java.sql.*" %>

<%

int edad, clave;

String g,nombre;

Connection canal = null;

ResultSet tabla= null;

Statement instruccion=null;

String sitiobase = "c:/inetpub/wwwroot/llevar/base/mibase.mdb";

String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
canal=DriverManager.getConnection(strcon);

instruccion = canal.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

b

catch(SQLException e)
{
out.printin("EXCEPCION : "+e.getMessage());
b

try

{
tabla = instruccion.executeQuery("select * from mitabla");
tabla.last();

int ultimo=tabla.getInt(1);

Aplicaciones Cliente Servidor Pagina 64.

Tec. En Ingenieria en Sistemas

tabla.first(); %>

<p>Los Datos de la Tabla son:</p>
<center><table border="1" cellpadding="0" cellspacing="0" bordercolor="#111111"
width="62%">

<th> CLAVE <th> NOMBRE <th> EDAD

<%

for(int r=1; r<=ultimo; r++)

clave = tabla.getInt(1);

nombre = tabla.getString(2);

edad =tabla.getlnt(3);

edad=edad+?5;

q="update mitabla set edad= "+edad+ " where clave = "+clave+";";
instruccion.executeUpdate(q);

%>

<tr><td align=center> <%=clave%><td> <%=nombre%><td align=center> <%=edad%>
<%

clave=clave+1;

tabla = instruccion.executeQuery("select * from mitabla");

tabla.absolute(clave);

}i %>

</table>

</center>

<%

b
finally

{
try

{
if (tabla !'= null)

tabla.close();
b
if (instruccion !'= null)
{
instruccion.close();
b
if (canal !'= null)
{
canal.close();
b
b
catch (Exception e)
{
out.printin("EXCEPCION : "+e.getMessage());
b
b
%>

</body>
</html>

Aplicaciones Cliente Servidor Pagina 65.

Tec. En Ingenieria en Sistemas

Escuela Especializada y — %
en Ingenieria g@)‘i
ITC A v Ferrane Guia Practica No 7 e/

JSP con Bases de Datos

| OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Utilizar distintos formatos para desplegar la fecha del sistema.
e Realizar Consultas a Bases de Datos por medio de SQL, utilizando JSP.
e Utilizar diferentes tipos de conexion ODBC con bases de Datos.
e Crear acceso a Aplicaciones Web con JSP.

PROCEDIMIENTO

La clase Date.

En ocasiones, los programas necesitan trabajar con la fecha y hora en curso. La clase para
manejo de fechas en Java, java.util.date, proporciona métodos para representar y manipular
fechas y horas. Si un programa llama al constructor de la clase date sin parametros, se crea una
instancia que se inicializa con la fecha y hora en curso.

Como las fechas se representan de diferentes formas en distintas partes del mundo, la clase
Date proporciona un método que da formato a la fecha en el estilo local. El método
toLocaleString (a cadena local) toma la informacion de la fecha de la instancia y crea un objeto
String. Por ejemplo las siguientes instrucciones de JSP utilizan los métodos de la clase Date para
desplegar la fecha y hora del sistema.

Fecha.jsp

<HTML>

hola hoy es:

<%= new java.util.Date().toLocaleString() %>
</HTML>

El siguiente ejemplo JSP, muestra el encabezado de una aplicacién Web incluyendo la fecha del
sistema en formato largo. Para ejecutarlo debe incluir en la URL el parametro NOMBRE, por
ejemplo:

http://localhost/MiAplicacion/Fechalarga.jsp?NOMBRE=JOSE PEREZ.
FechalLarga.jsp

<%@page import="java.util.* java.text.*"%>

<%DateFormat dtLong = DateFormat.getDateTimelnstance(
DateFormat.LONG, DateFormat.LONG); //Obteniendo Formato de Fecha
%>

<html>

<head>

<base target=contents>

<title>Encabezado de la Aplicacion</title>

</head>

<body rightMargin=2 leftMargin=2 topMargin=2 text=#FFFFFF>
<table border=0 cellpading=0 cellspacing=0 width=100% height=65>
<tr align= center>

<td bgcolor=#006699 height=58><p align=left>

</td>

Aplicaciones Cliente Servidor Pagina 66.

Tec. En Ingenieria en Sistemas

<td height=78 bgcolor=#006699>

 SISTEMA DE CONTROL DE ACCESOS

BIENVENID@ <%= request.getParameter("NOMBRE")% >

</td>

</tr>

<tr>

<td valign="top' align="right' colspan=2 bgcolor=#000080><font face=Verdana size=1
color=#ffffff>

<%

//Obteniendo La fecha Actual, supriendo la Hora ***

String Fecha = dtLong.format(new Date()).toString();

int Contar = Fecha.indexOf(":");// Buscando los 2 puntos de la hora
Fecha = Fecha.substring(0,Contar-3); //recuperando solo la fecha en formato largo
out.printin(Fecha); //Imprimiendo Fecha Actual ***

%>

</td>

</tr>

</table>

</body>

</html>

JDBC SQL RESULTSET

El modelo de datos de java descansa en una serie de objetos especializados que facilitan el
procesamiento de una base de datos.

" El problema es comunicar un programa o aplicacién con una base de datos y mas que

comunicar se pretende que el programa o aplicacién realice una serie de procesos u operaciones
con la base de datos o mejor aun con el conjunto de tablas que contiene una base de datos.

® La primera nota a recordar es que una base de datos puede estar fisicamente en el servidor y
en algun folder o directorio del disco duro de dicha maquina servidora por ejemplo,
c:\prograiv\misitio\mibase.mbd, como se observa la base que se construydé en access
(mibase.mbd) se almaceno en el disco c en el folder prograiv y dentro del subfolder misitio.

® El modo de comunicarse entre nuestro programa o aplicacién y la base de datos (ya sea fisica
o un dbserver) implica que ambos manejen un lenguaje de programacién comun, es decir no se
puede mandar una instruccion en Basic o pascal, a la base de datos y ademas esperar que esta
ultima la entienda (para entender esto, una razén muy sencilla es que la base de datos tendria
que conocer o comprender todos los lenguajes de programacion), para resolver este problema
de comunicacidon es que se usa un lenguaje comun de bases de datos que tanto los lenguajes de
programacion existentes como las bases de datos entienden, este lenguaje comun de bases de
datos es el SQL (structured query languaje) o lenguaje estructurado de consultas.

Ahora para mandar las instrucciones SQL a la base de datos, la respuesta son los siguientes
OBJETOS.

_ OBJETO JDBCODBCDRIVER: Objeto que se utiliza para traducir las instrucciones del
lenguaje SQL a las instrucciones del lenguaje original de la base de datos.

Aplicaciones Cliente Servidor Pagina 67.

Tec. En Ingenieria en Sistemas

_ OBJETO CONNECTION: Objeto que se utiliza para establecer una conexidn o enlace a la base
de datos.

_ OBJETO RESULTSET: Es la representaciéon en memoria de una de las tablas de la base de
datos en disco, se puede entender como una tabla virtual, recordar que generalmente todos los
procesos que se realicen con la tabla (insertar registros, eliminar registros, etc) se realizaran
realmente contra un resulset y no provocaran ningun cambio en la tabla fisica en disco, resulset
tiene un conjunto de métodos muy Utiles y muy usados para el proceso de los renglones de la
tabla virtual.

_ OBJETO STATEMENT: Este objeto y sus dos métodos executequery (solo consultas de
Seleccidn) y executeupdate (Solo para consultas de Accion) son los métodos que se utilizaran
para comunicarse con la tabla fisica en disco.

Ejemplo:

Connection con = null;

ResultSet rs= null;

Statement stmt=null;

String sitiobase = "c:/prograiv/base/mibase.mdb";

String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

con = DriverManager.getConnection(strcon);

stmt = canal.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

catch(java.lang.ClassNotFoundException e)

{

//instrucciones Catch

b
catch(SQLException e)
{

//instrucciones Catch

}s

Para ejecutar el siguiente ejemplo debe incluir en la URL el paréametro EDAD, por ejemplo:

Consultal.jsp

<HTML><HEAD><TITLE>EJEMPLO DE CONEXION A BASES DE DATOS</TITLE></HEAD>
<BODY><H2 ALIGN=CENTER> INFORMACION ALMACENADA EN LA BASE DE DATOS
</H2><HR><P>

<%@ page import="java.io.*, java.util.*, java.net.*, java.sql.*" %>

<%

Connection canal = null;

ResultSet tabla= null;

Statement instruccion=null;

String sitiobase = "c:/inetpub/wwwroot/MiAplicacion/base/mibase.mdb";

String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try

{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
canal=DriverManager.getConnection(strcon);

instruccion = canal.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);

catch(java.lang.ClassNotFoundException e)

{
out.printin("EXCEPCION CLASE NO ENCONTRADA: "+e.getMessage());

Aplicaciones Cliente Servidor Pagina 68.

Tec. En Ingenieria en Sistemas

b
catch(SQLException €)
{
out.printin("EXCEPCION1 SQL: "+e.getMessage());

3

int edad = Integer.parselnt(request.getParameter("EDAD"));
String g="select * from mitabla where edad >="+edad;

try

{
tabla = instruccion.executeQuery(q);

out.printin("<CENTER><TABLE Border=10 CellPadding=5><TR>");

out.printin("<th bgcolor=Green>CLAVE</th><th bgcolor=White>NOMBRE</th><th
bgcolor=Red>EDAD</th></TR>");

while(tabla.next())

{
out.printin("<TR>");
out.printin("<TD>"+tabla.getString(1)+"</TD>");
out.printin("<TD>"+tabla.getString(2)+"</TD>");
out.printin("<TD>"+tabla.getString(3)+"</TD>");
out.printin("</TR>");

¥; // fin while
out.printin("</TABLE></CENTER></HTML>");
tabla.close();

} //fin try no usar ; al final de dos o mas catchs
catch(SQLException e)

{
out.printin("EXCEPCION2 SQL: "+e.getMessage());
3

try

canal.close();
b
catch(SQLException e)
{
out.printin("EXCEPCION3 SQL: "+e.getMessage());
3

%>

IMAGENES EN APLICACIONES CON BASES DE DATOS.

Campos de graficos o de imagenes, se han convertido en elementos importantes de cualquier
base de datos.

Para manejar este elemento con java-jsp puedes utilizar el siguiente método:

Primero subir las imagenes (de preferencia jpg) con un ftp normal a tusitio o directorio donde
guardaras las imagenes y después usar el tag de html y ademas agregar un campo
de texto llamado fotourl o foto a la tabla en Access y grabar la direccidon o path de la imagen en
este campo, por ejemplo http://programacionfacil.com/tusitio/pato.jpg o simplemente
/tusitio/pato.jpg Después solo cargar este tag imageurl en la pagina que se construirad que no
es otra cosa que el programa de busqueda con el despliegue del campo extra, como lo muestra
el programa ejemplo

Para ejecutar el siguiente ejemplo debe incluir en la URL el pardametro CLAVE, por ejemplo:
http://localhost/MiAplicacién/Consulta2.jsp?CLAVE=1,

Se asume ademadas que todas las imagenes se guardan en el directorio “Base” y que tiene
extension jpg. Se recomienda analizar detenidamente el ejemplo.

Consulta2.jsp

<HTML><HEAD><TITLE>EJEMPLO DE REGISTROS CON IMAGENES</TITLE></HEAD><BODY>
<H2 ALIGN=CENTER> INFORMACION DEL USUARIO CON FOTOGRAFIA </H2><HR><P>

<%@ page import="java.io.*, java.util.*, java.net.*, java.sql.*" %>

<%

Aplicaciones Cliente Servidor Pagina 69.

Tec. En Ingenieria en Sistemas

String foto;

Connection canal = null;

ResultSet tabla= null;

Statement instruccion=null;

String sitiobase = "c:/inetpub/wwwroot/llevar/base/mibase.mdb";

String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try {

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
canal=DriverManager.getConnection(strcon);

instruccion = canal.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_UPDATABLE);

b

catch(java.lang.ClassNotFoundException €)
{
out.printin("EXCEPCION CLASE NO ENCONTRADA: "+e.getMessage());
¥
catch(SQLException e)
{
out.printin("EXCEPCION1 SQL: "+e.getMessage());

b

int clave = Integer.parselnt(request.getParameter("CLAVE"));

String g="select * from mitabla where clave="+clave;

try {

tabla = instruccion.executeQuery(q);

out.printin("<center><TABLE Border=10 CellPadding=5><TR>");

out.printin("<th bgcolor=Green>CLAVE</th><th bgcolor=White>NOMBRE</th><th
bgcolor=Red>EDAD</th><th

bgcolor=gray>FOTOGRAFIA</th></TR>");

while(tabla.next())

{
out.printin("<TR>");

out.printin("<TD>"+tabla.getString(1)+"</TD>");
out.printin("<TD>"+tabla.getString(2)+"</TD>");
out.printin("<TD>"+tabla.getString(3)+"</TD>");

foto=tabla.getString(4);

out.printin("<TD>");
out.printin("</TR>");

¥; // fin while

out.printin("</TABLE></CENTER></HTML>");

tabla.close();

b

catch(SQLException e)
{
out.printin("EXCEPCION2 SQL: "+e.getMessage());
i

try

canal.close();
b
catch(SQLException e)
{
out.printin("EXCEPCION3 SQL: "+e.getMessage());
b

%>

Aplicaciones Cliente Servidor Pagina 70.

Tec. En Ingenieria en Sistemas

EJERCICIOS

Para la realizacion de los siguientes ejercicios deberds crear una base de datos en Access con el
nombre de MiAplicacion.mdb.

1. Construir una tabla (notas) en que traiga carnet, nombre, apellido, califl, calif2, calif3 y
promedio, cargar en Access unos 5 renglones de alumnos, no cargar promedio, el promedio lo
deberan calcular con un programa en JSP.

NOTA. CALIF1 equivale al 30% de la nota final, CALIF2 Y CALIF3 cada una 35%.

2. Crear un programa en JSP que muestre la informacién almacenada en la tabla anterior.

3. Construir un proceso de busqueda de un alumno por medio de carnet, nombre o apellido y
que pueda mostrar los datos de sus calificaciones y promedio final.

4. Crear la interfaz de entrada de una aplicacion web, que pida el identificador de usuario y
contrasefia, la validez de estos parametros se verificard con la informacion almacenada en la
base de datos. Si el usuario es valido se desplegara la pantalla de entrada del sistema en una
interfaz web compuesta por 3 marcos (frames); un encabezado que mostrara un mensaje de
bienvenida y la fecha del sistema, un menu principal, y una pagina principal, como se muestra
en la figura.

ENCABEZADO TABLA USUARIOS
[dusuario
M PAGINA PRINCIPAL Nombre
E Apellido
N Contrasena

Aplicaciones Cliente Servidor Pagina 71.

Tec. En Ingenieria en Sistemas

YT e Clase N° 8 o)
ITCA ¥ Ferane Manejo de sesiones y cookies =
con JSP
| OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Definir que es el estado de sesion.
e Manejar el estado de sesion utilizando sesiones y cookies con JSP.

DESARROLLO

Introduccion

El protocolo HTTP permite acceder a paginas web y enviar datos de un formulario pero tiene
una limitacién que consiste en que no puede almacenar cuando se cambia de servidor o de
pagina dentro de un mismo servidor. Por esta razon a este protocolo se le conoce como
protocolo sin estado.

Cuando se solicita una pagina independientemente del tipo que sea, el servidor abre una
conexién por la que envia los datos y luego ésta es cerrada una vez que ha terminado.

Qué es una sesion

Una sesidn es una serie de comunicaciones entre un cliente y un servidor en la que se realiza un
intercambio de informacién. Por medio de una sesidén se puede hacer un seguimiento de un
usuario a través de la aplicacion.

El tiempo de vida de una sesién comienza cuando un usuario se conecta por primera vez a
un sitio web pero su finalizacion puede estar relacionada con tres circunstancias:

- Cuando se abandona el sitio web.

- Cuando se alcanza un tiempo de inactividad que es previamente establecido, en este
caso la sesion es automaticamente eliminada. Si el usuario siguiera navegando se
crearia una nueva sesion.

- Se ha cerrado o reiniciado el servidor

Una posible aplicacidn de las sesiones es en el comercio electrdnico. En este caso una

sesion permite ir eligiendo una serie de productos e irlos afiadiendo a nuestro “carrito” y asi
hasta finalizar la compra. Sin el uso de sesiones no se podria hacer porque al ir navegando de
una pagina a otra se iria perdiendo toda la informacion.

También se utilizan para la identificacion de usuarios, en la que se deben de introducir un

login y un password. Después de haber hecho esto el usuario tendrd una serie de permisos
sobre las paginas que va a visitar, de tal forma que si un usuario intenta pasar a una pagina si
haberse identificado, el sistema comprobara que no se ha identificado y seria redireccionado a la
pagina de identificacidon. Para poder realizarse estas operaciones es necesario almacenar en unas
tipo sesion la informacidon necesaria para saber que el usuario se ha identificado correctamente.

Para poder hacer uso de las sesiones en JSP hay que poner el atributo session de la directiva
page a true, de esta forma se notifica al contenedor que la pagina interviene en un proceso que
utiliza las sesiones del protocolo HTTP:

<% @page session="true’%>

El manejo de las sesiones impide el intercambio de datos entre ellas ya que se trata informacion
especifica para cada usuario e incluso si se trata del mismo usuario.

Aplicaciones Cliente Servidor Pagina 72.

Tec. En Ingenieria en Sistemas

Manejo de las sesiones

En JSP las acciones que se pueden realizar sobre las sesiones se lleva a cabo mediante la
interface HttpSession y los métodos que implementa. Esta interfaz esta incluida dentro del
paquete javax.servlet.http y es utilizada por el contenedor de paginas JSP para crear una sesion
entre el servidor y el cliente.

Para obtener la sesion de un usuario se utiliza el método getSession() que devuelve una
interfaz de tipo HttpSession.

<%
HttpSession sesion=request.getSession();
%>

Una vez creado el objeto de tipo sesidon es posible acceder a una serie de datos sobre la
misma. Uno de estos datos es idSession que devuelve un identificador Unico asociado a una
sesion:

<%

HttpSession sesion=request.getSession();
out.printin(“IdSesion: "+sesion.getld());
%>

Es posible conocer el momento en el que se cred la sesion:

<% @page import="java.util.*” session="true"%>
<%

HttpSession sesion=request.getSession();
out.printIn(“Creacidn: “+sesion.getCreationTime());
Date momento=new Date(sesion.getCreationTime());
out.printin(*
Creacién: “+momento);

%>

En el primer caso se muestra el dato tal cual lo devuelve el método getCreationTime(), que
es una fecha en formato long, mientras que en el segundo caso se formatea para que tenga un
aspecto mas comun.

También se puede conocer la fecha y hora de la ultima vez que el cliente accedid al servidor con
el que se cred la sesion, utilizando el método getLastAccesedTime():

<%

Date acceso=new Date(sesion.getLastAccessedTime());
out.printin(*Ultimo acceso: “+acceso+"
");

%>

Teniendo en cuenta el momento en el que ser cred la sesion y la Gltima vez que se accedid
al servidor, se puede conocer el tiempo que lleva el cliente conectado al servidor, o lo que es lo
mismo el tiempo que lleva el usuario navegando por la paginas JSP:

<%

long longDuracion=sesion.getLastAccessedTime()
sesion.getCreationTime();

Date duracion=new Date(longDuracion);

out.printin(*Duracion:
“+duracion.getMinutes()+"min.”+duracion.getSeconds()+"seg”)

I
%>

La interfaz HttpSession ofrece el método isNew() mediante el cual es posible saber si la
sesion creada es nueva o se esta tomando de una previamente creada:

Aplicaciones Cliente Servidor Pagina 73.

Tec. En Ingenieria en Sistemas

<%

HttpSession sesion=request.getSession();
out.printin(“nueva: “+sesion.isNew());
%>

Si se ejecuta el ejemplo la primera vez el método devolvera true, ya que previamente no habia
ninguna sesion y ha sido creada en ese instante. Si se recarga la pagina devolvera false ya que
la sesidn ya ha sido creada.

Guardar objetos en una sesion

Para guardar un objeto en una sesidn se utiliza el método setAttribute(), que ha sustituido al
método putValue(). Este método utiliza dos argumentos:

- El primero es el nombre que identificara a esa variable.
- El segundo es el dato que se va a guardar.

SetAttribute(java.lang.String name, java.lang.Object value)

Un ejemplo de como guardar una cadena de texto en la sesion:

<% @page import="java.util.*” session="true” %>
<%

HttpSession sesion=request.getSession();
sesion.setAttribute(“trabajo”,”Paginas de JSP");
%>

Si se quiere pasar un parametro que no sea un objeto es necesario realizar una conversion:

<% @page import="java.util.*” session="true” %>
<%

HttpSession sesion=request.getSession();

Integer edad=new Integer(26);
sesion.setAttribute(“edad”,edad);

%>

Si se hubiera utilizado el valor entero en vez del objeto Integer, el resultado habria sido similar
al siguiente.

Incompatible type for meted. Can’t convert int to java.lang.Object.

En el primer ejemplo este no sucederia puesto que una cadena es un objeto de tipo String,
no asi un entero . Asi habria sido igual si en el primer caso ponemos:

<% @page import="java.util.*” session="true” %>
<%

HttpSession sesion=request.getSession();

String nombre=new String(“Paginas de JSP-);
sesion.setAttribute(“trabajo”,nombre);

%>

En caso de tratarse objeto de tipo Vector (parecido a un array con dos diferencias: la primera es
que puede almacenar todo tipo de objetos, y la segunda es que no es necesario establecer de
forma previa el tamafio que va a tener) que almacene los 7 dias de la semana. El cddigo seria el
siguiente:

<% @page import="java.util.*” session="true” %>
<%
HttpSession sesion=request.getSession();

Aplicaciones Cliente Servidor Pagina 74.

Tec. En Ingenieria en Sistemas

Vector v=new Vector();
v.addElement(new String(“Lunes”));
v.addElement(new String(“Martes”));
v.addElement(new String(“Miercoles”));
v.addElement(new String(“Jueves”));
v.addElement(new String(“Viernes”));
v.addElement(new String(*Sabado”));
v.addElement(new String("Domingo”));
sesion.setAttribute(“diasSemana”,v);
%>

Recuperar objetos de una sesién

Los datos que se guardan en la sesidén permanecen ahi a la espera de ser utilizados. Para ello es
necesario realizar el proceso contrario a cuando se graban, comenzando por la recuperacion del
objeto de la sesion para empezar a ser tratado.

Para poder realizar este paso se utiliza el método getAttribute() (anteriormente se utilizaba el
meétodo getValue(), pero este método se encuentra en desuso), utilizando como argumento el
nombre que identifica al objeto que se quiere recuperar.

getAttribute(java.lang,String nombre)

Un ejemplo de recuperacion de objetos almacenados en la sesidn:

<%

HttpSession sesion=request.getSession();
Sesion.getAttribute("nombre”);

%>

Cuando este método devuelve el objeto no establece en ninglin momento de qué tipo de
objeto se trata(String, Vector...)

Por ello si se conoce previamente el tipo de objeto que puede devolver tras ser recuperado de la
sesidn es necesario realizar un casting, para convertir el objeto de tipo genérico al objeto exacto
que se va a usar. Para realizar esta operacidn se afiade el tipo de objeto al lado de tipo
HttpSession que utiliza el método getAttribute() para obtener el objeto que devuelve:

<%

HttpSession sesion=request.getSession();

String nombre=(String)sesion.getAttribute(*nombre”);
out.printin(*Contenido de nombre: “+nombre);

%>

Si no existe ningun objeto almacenado en la sesion bajo el identificador que se utiliza en el
método getAttribute(), el valor devuelto sera null. Por ello habra que prestar especial atencion
ya que si se realiza el casting de un valor null el contenedor JSP devolvera un error. Lo mejor en
estos casos es adelantarse a los posibles errores que pueda haber.

<%

if(sesion.getAttribute("*nombre”)!=null)

{

String nombre=(String)sesion.getAttribute(*nombre”);
out.printin(*Contenido de nombre: “+nombre);

b

%>

Aplicaciones Cliente Servidor Pagina 75.

Tec. En Ingenieria en Sistemas

Por ultimo, el ejemplo del vector guardado en la sesidn tiene un tratamiento similar al de
los casos anteriores. El primer paso es recuperar el objeto de la sesién:

<% @page import="java.util.*” session="true” %>
<%

HttpSession sesion=request.getSession();
sesion.getAttribute(“diasSemana”);

%>

Como se sabe que el objeto es de tipo Vector se puede recuperar y convertir en un solo
paso:

Vector v= (Vector) sesion.getAttribute(“diasSemana”);

A partir de este momento se puede acceder a los elementos del vector independientemente
de si venia de una sesidon o ha sido creado. Para ello se utiliza el método size() que devuelve el
tamafio del vector para ir leyendo cada uno de sus elementos:

<%

for(int i=0; i<v.size(); i++)

{

out.printin(*Dia: "+(String)v.get(i)+"
");

b

%>

Como se destruye una sesion
Como se ha visto, los datos almacenados por las sesiones pueden destruirse en tres casos:

- El usuario abandona aplicacion web (cambia de web o cierra el navegador) - Se alcanza el
tiempo maximo permitido de inactividad de un usuario (timeout).

- El servidor se para o se reincia.

Pero la situacidn mas probable es querer iniciar las sesiones o dar por finalizada una si se

ha cumplido una o varias condiciones. En este caso no es necesario esperar a que ocurra alguno
de los tres casos citados anteriormente, ya que mediante el método invalidate() es posible
destruir una sesién concreta.

En el siguiente caso la sesion “sesion” se destruye al invocar el método invalidate(); y por
la tanto el valor u objeto que esta asociado a la misma.

<%
[...]
sesion.invalidate();
%>

Cookies

Las sesiones vistas anteriormente basan su funcionamiento en los cookies. Cuando se hace uso
de la interfaz HttpSession de forma interna y totalmente transparente al programador se esta
haciendo uso de los cookies. De hecho cuando a través de una pagina JSP se comienza una
sesion, se crea un cookie llamado JSSESIONID. La diferencia es que este cookie es temporal y
durara el tiempo que permanezca el navegador ejecutandose, siendo borrada cuando el usuario
cierre el navegador.

Crear una cookie

Aplicaciones Cliente Servidor Pagina 76.

Tec. En Ingenieria en Sistemas

Un cookie almacenado en el ordenador de un usuario estda compuesto por un nombre y un valor
asociado al mismo. Ademas, asociada a este cookie pueden existir una serie de atributos que
definen datos como su tiempo de vida, alcance, dominio, etc.

Cabe resefiar que los cookies, no son mas que ficheros de texto, que no pueden superar un
tamano de 4Kb, ademas los navegadores tan sdlo pueden aceptar 20 cookies de un mismo
servidor web (300 cookies en total).

Para crear un objeto de tipo Cookie se utiliza el constructor de la clase Cookie que requiere
su nombre y el valor a guardar. El siguiente ejemplo crearia un objeto Cookie que contiene el
nombre “nombre” y el valor “objetos”.

<%
Cookie miCookie=new Cookie(*nombre”,”objetos”);
%>

También es posible crear cookies con contenido que se genere de forma dinamica. El siguiente
cédigo muestra un cookie que guarda un texto que estd concatenado a la fecha/hora en ese
momento:

<% @page contentType="text/html; charset=iso-8859-1"

session="true" language="java" import="java.util.*" %>

<%

Cookie miCookie=null;

Date fecha=new Date();

String texto= “Este es el texto que vamos a guardar en el cookie”+fecha;
miCookie=new Cookie(*nombre”,texto);

%>

Por defecto, cuando creamos un cookie, se mantiene mientras dura la ejecucién del navegador.
Si el usuario cierra el navegador, los cookies que no tengan establecido un tiempo de vida seran
destruidos.

Por tanto, si se quiere que un cookie dure mas tiempo y esté disponible para otras situaciones es
necesario establecer un valor de tiempo (en segundos) que sera la duracién o tiempo de vida del
cookie. Para establecer este atributo se utiliza el método setMaxAge(). El siguiente ejemplo
establece un tiempo de 31 dias de vida para el cookie “unCookie”:

<%
unCookie.setMaxAge(60*60*24*31);
%>

Otros de los atributos que se incluye cuando se crea un cookie es el path desde el que sera
visto, es decir, si el valor del path es “/” (raiz), quiere decir que en todo el site se podra utilizar
ese cookie, pero si el valor es “/datos” quiere decir que el valor del cookie solo sera visible
dentro del directorio “datos”. Este atributo se establece mediante el método setPath().

<%

unCookie.setPath(“/");

%>

Para conocer el valor de path, se puede utilizar el método getPath().
<%

out.printin(“cookie visible en: “+unCookie.getPath());

%>

Existe un método dentro de la clase Cookie que permite establecer el dominio desde el cual
se ha generado el cookie. Este método tiene su significado porque un navegador sdélo envia al

Aplicaciones Cliente Servidor Pagina 77.

Tec. En Ingenieria en Sistemas

servidor los cookies que coinciden con el dominio del servidor que los envid. Si en alguna
ocasion se requiere que estén disponibles desde otros subdominios se especifica con el método
setDomain(). Por ejemplo, si existe el servidor web en la pagina www.paginasjsp.com , pero al
mismo tiempo también existen otros subdominios como usuariol.paginasjsp.com,
usuario2.paginasjsp.com, etc.

En el siguiente ejemplo hace que el cookie definido en el objeto “unCookie” esté disponible para
todos los dominios que contengan el nombre “.paginasjsp.com”. Un nombre de dominio debe
comenzar por un punto.

<%
unCookie.setDomain(*.paginasjsp.com”);
%>

Igualmente, para conocer el dominio sobre el que actua el cookie, basta con utilizar el

método getDomain() para obtener esa informacion.

Una vez que se ha creado el objeto Cookie, y se ha establecido todos los atributos necesarios es
el momento de crear realmente, ya que hasta ahora sélo se tenia un objeto que representa ese
cookie.

Para crear el fichero cookie real, se utiliza el método addCookie() de la interfaz
HttpServletResponse:

<%
response.addCookie(unCookie);
%>

Una vez ejecutada esta linea es cuando el cookie existe en el disco del cliente que ha
accedido a la pagina JSP.

Es importante sefialar que si no se ejecuta esta Ultima linea el cookie no habra sido grabado
en el disco, y por lo tanto, cualquier aplicacion o pagina que espere encontrar dicho cookie no lo
encontrara.

Recuperar un cookie

El proceso de recuperar un cookie determinado puede parecer algo complejo, ya que no hay una
forma de poder acceder a un cookie de forma directa. Por este motivo es necesario recoger
todos los cookies que existen hasta ese momento e ir buscando aquél que se quiera, y que al
menos, se conoce su hombre.

Para recoger todos los cookies que tenga el usuario guardados se crea un array de tipo

Cookie, y se utiliza el método getCookies() de la interfaz HttpServletRequest para recuperarlos:

<%

Cookie [] todosLosCookies=request.getCookies();

/* El siguiente paso es crear un bucle que vaya leyendo
todos los cookies. */

for(int i=0;i<todosLosCookies.length;i++)

{

Cookie unCookie=todosLosCookies[i];

/* A continuacion se compara los nombres de cada uno de
los cookies con el que se esta buscando. Si se encuentra un
cookie con ese nombre se ha dado con el que se estd
buscando, de forma que se sale del bucle mediante break. */
if(unCookie.getName().equals(“*nombre™))

break;

b

/* Una vez localizado tan sélo queda utilizar los

métodos apropiados para obtener la informacién necesaria
que contiene. */

out.printin(*Nombre: “+unCookie.getName()+"
");
out.printin(“*Valor: “+unCookie.getValue()+"”"
");
out.printin(“Path: “+unCookie.getPath()+"“
");

Aplicaciones Cliente Servidor Pagina 78.

Tec. En Ingenieria en Sistemas

out.printin("*Tiempo de vida:“+unCookie.getMaxAge()+"
");
out.printin("Dominio: “+unCookie.getDomain()+"
");
%>

Aplicaciones Cliente Servidor Pagina 79.

Tec.

En Ingenieria en Sistemas

Escuela Especializada

en Ingenieria

Guia Practica No 8 w)
I'TCA wzFerane e
“ Manejo de sesiones y cookies =/
con JSP
OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Desarrollar aplicaciones utilizando sesiones con JSP.
e Crear aplicaciones utilizando cookies con JSP.

PROCEDIMIENTO

Administracion de usuarios.

Un caso practico donde poder usar las sesiones es en las paginas a las que se debe acceder
habiendo introducido previamente un usuario y una clave. Si no se introducen estos datos no se
podran visualizar y de igual modo si alguien intenta entrar directamente a una de estas paginas
sin haberse identificado sera redirigido a la pagina principal para que se identifique y, de este

modo, no pueda acceder de forma andnima.

La primera pdagina de la aplicacion JSP es en la que el usuario se debe identificar con un nombre

de usuario y una clave por lo que su aspecto sera el de un formulario.

La pagina JSP contiene el formulario el cual especifica la pagina destino cuando el usuario pulse
el botén de enviar los datos. Ademas se ha afiadido una comprobacion en la que en caso de
recibir un parametro llamado “error” se muestra el mensaje que contenga. De esta forma el

usuario ve qué tipo de error se ha producido.

login.jsp

<% @page contentType="text/html; charset=iso-8859-1"
session="true" language="java" import="java.util.*" %>
<html>

<head> <title>Proceso de login</title>

</head>

<body>

Proceso de identificacion

<p>

<%

if(request.getParameter("error")!=null)

Esta pagina es la encargada de recoger del usuario y la clave enviados desde el formulario. Una
vez recibidos se almacenan en dos variables(“usuario” y “clave”) de tipo String. A continuacion

se comparan con los valores correctos del usuario y la clave.

Si esta comprobacién es correcta se crea un objeto de tipo session y se guarda el valor en la

variable “usuario” en la sesién mediante el método setAttribute().

A continuacidon y mediante la opcion estandar <jsp: fordward> se redirecciona al usuario a
la pagina final en la que se encuentra el menu de opciones al que se accede después de haber

completado de forma satisfactoria el proceso de identificacion.

En caso que la comprobacion de usuario y clave no se cumpla se redirecciona al usuario
hacia la pagina de inicio, para que vuelva a identificarse incluyendo esta vez un parametro
llamado “error” con un mensaje que avisara de qué es lo que le ha ocurrido.

Aplicaciones Cliente Servidor

Pégina 80.

Tec. En Ingenieria en Sistemas

checklogin.jsp

<%@ page session="true" %>

<%

String usuario = "";

String clave = "";

if (request.getParameter("usuario") !'= null)
usuario = request.getParameter("usuario");
if (request.getParameter("clave") !'= null)
clave = request.getParameter("clave");

if (usuario.equals("spiderman") &&
clave.equals("librojsp")) {

HttpSession sesionOk = request.getSession();
sesionOk.setAttribute("usuario",usuario);
%>

<jsp:forward page="menu.jsp" />

<%

¥ else {

%>

<jsp:forward page="login.jsp">
<jsp:param name="error" value="Usuario y/o clave
incorrectos.
Vuelve a intentarlo."/>
</jsp:forward>

<%

b

%>

menu.jsp

<% @ page session="true" %>

<%

String usuario = "";

HttpSession sesionOk = request.getSession();

if (sesionOk.getAttribute("usuario") == null) {

%>

<jsp:forward page="login.jsp">

<jsp:param name="error" value="Es

obligatorio identificarse"/>

</jsp:forward>

<%

¥ else {

usuario = (String)sesionOk.getAttribute("usuario");
b

%>

<html>

<head> <title>Proceso de login</title>

</head>

<body>

PROCESO DE IDENTIFICACION<p>
Menu de administracién

Usuario activo: <%=usuario%><p>

 Crear nuevo usuario
 Borrar un usuario
 Cambiar clave

<p>

 Cerrar sesiéon
</body>

</html>

La ultima opcidén que incorpora el menu es la de “Cerrar sesidn”, que sera de gran utilidad

Aplicaciones Cliente Servidor

Pagina 81.

Tec. En Ingenieria en Sistemas

cuando se haya finalizado el trabajo y queremos estar seguro que nadie realiza ninguna accion
con nuestro usuario y clave.

Al pulsar este enlace, se recupera de nuevo la sesion y mediante el método invalidate() se

da por finalizada la sesion.

cerrarsesion.jsp

<%@ page session="true" %>

<%

HttpSession sesionOk = request.getSession();
sesionOk.invalidate();

%>

<jsp:forward page="login.jsp"/>

Utilizar cookies

Para realizar un ejemplo practico se va a seguir con el ejemplo de Sesiones. El objetivo sera
modificar las paginas necesarias para que si el usuario selecciona un campo de tipo checkbox
(que sera necesario afiadir) el nombre de usuario le aparezca por defecto cuando vuelva a entrar
a esa pagina. Este nombre de usuario estara guardado en un cookie en su ordenador.

El primer paso es anadir el checkbox en la pagina login.jsp:

<%@ page session="true" import="java.util.*"%>

<%
String usuario = "";
String fechaUltimoAcceso = "";

/*BuUsqueda del posible cookie si existe para recuperar
su valor y ser mostrado en el campo usuario */
Cookie[] todosLosCookies = request.getCookies();

for (int i=0; i<todosLosCookies.length; i++) {

Cookie unCookie = todosLosCookies[i];

if (unCookie.getName().equals("cokieUsu")) {

usuario = unCookie.getValue();

b
b
/* Para mostrar la fecha del Ultimo acceso a la pagina.

Para ver si el cookie que almacena la fecha existe, se busca en los
cookies existentes. */

for (int i=0; i<todosLosCookies.length; i++) {

Cookie unCookie = todosLosCookies[i];

if (unCookie.getName().equals("ultimoAcceso")) {
fechaUltimoAcceso = unCookie.getValue();

b
b
/* Se comprueba que la variable es igual a vacio, es decir
no hay ningun cookie llamado “ultimoAcceso", por lo que se
recupera la fecha, y se guarda en un nuevo cookie. */

if (fechaUltimoAcceso.equals(""))

{
Date fechaActual = new Date();
fechaUltimoAcceso = fechaActual.toString();
Cookie cookieFecha = new
Cookie("ultimoAcceso",fechaUltimoAcceso);
cookieFecha.setPath("/");
cookieFecha.setMaxAge(60*60*24);
response.addCookie(cookieFecha);

b
%>

<html>

<head> <title>Proceso de login</title>
</head>

Aplicaciones Cliente Servidor Pagina 82.

Tec. En Ingenieria en Sistemas

<body>)
PIf{OCESO DE IDENTIFICACION

Ultima vez que accedid a esta

pagina:
<%=fechaUltimoAcceso% >
<p>

<%

if (request.getParameter("error") != null) {
out.printin(request.getParameter("error"));
b
%>

<form action="checklogin.jsp" method="post">

usuario: <input type="text" name="usuario" size="20"
value="<%=usuario%>">

clave: <input type="password" name="clave" size="20">

Recordar mi usuario: <input type="checkbox"
name="recordarUsuario" value="on">

<input type="submit" value="enviar">

</form>

</body>

</html>

El siguiente paso es modificar la pagina checklogin.jsp que recoge el usuario y clave introducidos
y por lo tanto ahora también la nueva opcion de “Recordar mi usuario”. Dentro de la condicidon
que se cumple si el usuario y la clave son correctos, y después de crear la sesion, escribimos el
cédigo que creard el cookie con el usuario. El primer paso es comprobar que el usuario ha
activado esta opcidn, es decir, ha seleccionado el checkbox. También se realiza la comprobacion
de que el campo “recordarUsuario” no llegue con el valor nulo y produzca un error en la
aplicacidn, en caso de que el usuario deje sin seleccionar el checkbox:

<%@ page session="true" import="java.util.*"%>

<%

String usuario = "";

String clave = "";

if (request.getParameter("usuario") != null)

usuario = request.getParameter("usuario");

if (request.getParameter("clave") != null)

clave = request.getParameter("clave");

if (usuario.equals("spiderman") &&

clave.equals("librojsp")) {

out.printin("checkbox: " +
request.getParameter("recordarUsuario") + "
");

HttpSession sesionOk = request.getSession();
sesionOk.setAttribute("usuario”,usuario);

if ((request.getParameter("recordarUsuario") !'= null) &&
(request.getParameter("recordarUsuario").equals("on")))

{

out.printin("entra");

Cookie cookieUsuario = new Cookie

("cokieUsu",usuario);

cookieUsuario.setPath("/");

cookieUsuario.setMaxAge(60*60*24);
response.addCookie(cookieUsuario);

b

/* Se realiza un proceso similar a la creacién de cookie de
recordar el usuario. En este caso se trata de crear un nuevo cookie
con el nuevo valor de la fecha y guardarlo con el mismo nombre. De
esta forma sera borrado el anterior y prevalecera el valor del Ultimo.
*/

Date fechaActual = new Date();

Aplicaciones Cliente Servidor Pagina 83.

Tec. En Ingenieria en Sistemas

String fechaUltimoAcceso = fechaActual.toString();
Cookie cookieFecha = new
Cookie("ultimoAcceso",fechaUltimoAcceso);
cookieFecha.setPath("/");
cookieFecha.setMaxAge(60*60*24);
response.addCookie(cookieFecha);

%>

<jsp:forward page="menu.jsp" />

<%

¥ else {

%>

<jsp:forward page="login.jsp">

<jsp:param name="error" value="Usuario y/o clave
incorrectos.
Vuelve a intentarlo."/>
</jsp:forward>

<%

¥

%>

EJERCICIOS

1. Crear una aplicacion que valide un usuario utilizando una base de datos con el
nombre empleado y una tabla con el nombre usuarios con los campos siguientes: login
y contrasena, Si el usuario es correcto, entonces se creara la sesion que guarde el

login del usuario y se direccionara a una pagina jsp.

2. Crear la pagina jsp donde se re direccionara en el ejercicio #1, la cual permita
validar si existe la sesidn, en caso que no exista se direccionara a la pagina de

validacion.

3. Realizar los ejercicios anteriores utilizando cookies.

Aplicaciones Cliente Servidor

Pagina 84.

Tec. En Ingenieria en Sistemas

T .‘;'fﬁ"}\
ITCA wzrerane Clase N° 9 B
INTRODUCCION A SERVLETS —

| OBJETIVOS

Al finalizar la clase, el alumno sera capas de:
e Definir los conceptos basicos de la programacién orientada a objetos.
e Nombrar las tecnologias de Java para web y la estructura basica de éstas.
e Identificar los métodos que existen en la programacion para el web, para el
envio de informacion.

DESARROLLO

INTRODUCCION A LOS SERVLETS

Podemos decir que los Servlets son programas o moddulos que extienden los servidores
orientados a peticidn-respuesta, como los servidores web compatibles con Java. Por ejemplo, un
servlet podria ser responsable de tomar los datos de un formulario de entrada de pedidos en
HTML y aplicarle la légica de negocios utilizada para actualizar la base de datos de pedidos de la
compania.

| ==

Order-Entry Client —» OrderEmiry Serviet

Inventory
| Datahas ;.

HTTF
Gerer |

Los Servlets son para los servidores lo que los applets son para los navegadores. Sin embargo,
al contrario que los applets, los

servlets no tienen interfase grafico de usuario.

Los servlets pueden ser incluidos en muchos servidores diferentes porque el API Servlet, el que
se utiliza para escribir Servlets, no asume nada sobre el entorno o protocolo del servidor. Los
servlets se estan utilizando ampliamente dentro de servidores HTTP; muchos servidores Web
soportan el API Servlet.

UTILIZAR SERVLETS EN LUGAR DE SCRIPTS CGI!

Los Servlets son un reemplazo efectivo para los scripts CGI. Proporcionan una forma de generar
documentos dindamicos que son faciles de escribir y rapidos en ejecutarse. Los Servlets también
solucionan el problema de hacer la programacién del lado del servidor con APIs especificos de la
plataforma: estan desarrollados con el API Java Servlet, una extension estandard de Java.

Por eso se utilizan los servlets para manejar peticiones de cliente HTTP. Por ejemplo, tener un
servlet procesando datos POSTeados sobre HTTP utilizando un formulario HTML, incluyendo
datos del pedido o de la tarjeta de crédito. Un servlet como este podria ser parte de un sistema
de procesamiento de pedidos, trabajando con bases de datos de productos e inventarios, y
quizas un sistema de pago on-line.

Aplicaciones Cliente Servidor Pagina 85.

Tec. En Ingenieria en Sistemas

Otros usos de los Serviets

« Permitir la colaboracién entre la gente. Un servlet puede manejar multiples peticiones
concurrentes, y puede sincronizarlas. Esto permite a los servlets soportar sistemas como
conferencias on-line

» Reenviar peticiones. Los Servlets pueden reenviar peticiones a otros servidores y servlets. Con
esto los servlets pueden ser utilizados para cargar balances desde varios servidores que reflejan
el mismo contenido, y para particionar un Unico servicio légico en varios servidores, de acuerdo
con los tipos de tareas o la organizacion compartida.

éQué son los Servlets Java?

Los Servlets son las respuesta de la tecnologia Java a la programacién CGI. Son programas que
se ejecutan en un servidor Web y construyen paginas Web. Construir paginas Web dinamicas es
atil (y comunmente usado) por un nimero de razones:

- La pagina Web esta basada en datos enviados por el usuario. Por ejemplo, las paginas
de resultados de los motores de blsqueda se generan de esta forma, y los programas que
procesan pedidos desde sites de comercio electronico también.

- Los datos cambian frecuentemente. Por ejemplo, un informe sobre el tiempo o paginas de
cabeceras de noticias podrian construir la pagina dindmicamente, quizads devolviendo una pagina
previamente construida y luego actualizandola.

- Las paginas Web que usan informacion desde bases de datos corporativas u otras
fuentes. Por ejemplo, usariamos esto para hacer una pagina Web en una tienda on-line que
liste los precios actuales y el nimero de articulos en stock.

éCuadles son las Ventajas de los Serviets sobre el CGI "Tradicional"?

Los Servlets Java son mas eficientes, faciles de usar, mas poderosos, mas portables, y mas
baratos que el CGI tradicional y otras muchas tecnologias del tipo CGI.

- Eficiencia. Con CGI tradicional, se arranca un nuevo proceso para cada solicitud HTTP. Si el
programa CGI hace una operacion relativamente rapida, la sobrecarga del proceso de arrancada
puede dominar el tiempo de ejecucién. Con los Servlets, la maquina Virtual Java permanece
arrancada, y cada peticion es manejada por un thread Java de peso ligero, no un pesado
proceso del sistema operativo. De forma similar, en CGI tradicional, si hay N peticiones
simultaneas para el mismo programa CGI, el cédigo de este problema se cargara N veces en
memoria. Sin embargo, con los Servlets, hay N threads pero s6lo una copia de la clase Servlet.
Los Servlet también tienen mas alternativas que los programas normales

CGI para optimizaciones como los caches de calculos previos, mantener abiertas las conexiones
de bases de datos, etc.

- Conveniencia.lPor qué aprender otro lenguaje? Junto con la conveniencia de poder utilizar un
lenguaje familiar, los Servilets tienen una gran infraestructura para analisis automatico y
decodificacion de datos de formularios HTML, leer y seleccionar cabeceras HTTP, manejar
cookies, seguimiento de sesiones, y muchas otras utilidades.

« Potencia. Los Servlets Java nos permiten facilmente hacer muchas cosas que son dificiles o
imposibles con CGI normal.Por algo, los servlets pueden hablar directamente con el servidor
Web. Esto simplifica las operaciones que se necesitan para buscar imagenes y otros datos
almacenados en situaciones estandard. Los Servlets también pueden compartir los datos entre
ellos, haciendo las cosas Utiles como almacenes de conexiones a bases de datos faciles de
implementar. También pueden mantener informacién de solicitud en solicitud, simplicando cosas
como seguimiento de sesion y el caché de calculos anteriores.

- Portable. Los Servlets estan escritos en Java y siguen un API bien estandarizado.
Consecuentemente, los servlets escritos, digamos en el servidor I-Planet Enterprise, se pueden
ejecutar sin modificarse en Apache, Microsoft IIS, o WebStar. Los Servlets estan soportados
directamente o mediante plug-in en la mayoria de los servidores Web.

- Barato. Hay un numero de servidores Web gratuitos o muy baratos que son buenos para el
uso "personal" o el uso en sites Web de bajo nivel. Sin embargo, con la excepcion de Apache,
que es gratuito, la mayoria de los servidores Web comerciales son relativamente caros. Una vez

Aplicaciones Cliente Servidor Pagina 86.

Tec. En Ingenieria en Sistemas

que tengamos un servidor Web, no importa el coste del servidor, afiadirle soporte para Servlets
(si no viene preconfigurado para soportarlos) es gratuito o muy barato.

éDonde puedo ejecutar Servlets y qué necesito?

En la actualidad la mayoria de servidores web tanto comerciales como de licencia libre tienen la
capacidad de ejecutar servlets a través de plug-ins o médulos. A continuacién sefialaremos unos
cuantos:

_ Apache web server

_ Nestcape FastTrack 2.0

_ Microsoft IIS

_ Weblogic

__ Lotus Domino Go Web Server
_ IBM Interner Conexion Server
__Java Web Server

Con respecto a este Ultimo cabe destacar que ejecuta servlets de forma nativa sin necesidad de
madulos adicionales. Sefalaremos dos mddulos de ejecucion de servlets Allaire s JRun y Jakarta
Tomcat ambos gratuitos y descargables desde su pagina web si no es para usos comerciales.
Como dato adicional el JSDK 2.1 incluye una herramienta llamada servietrunner analoga a
appletviewer para la ejecucion y depuracion de servlet con unas capacidades muy limitadas por
lo que solo se debe usar para comprobar la exactitud del servlet.

Estructura de un servlet
El API Servlet consiste basicamente en dos paquetes:

-jJavax.servlet En este paquete se definen 6 interfaces y 3 clases para la implementacion de
servlets genéricos, sin especificacion de protocolo. Hoy en dia no tienen utilidad practica mas
que para servir de base en la jerarquia de clases de los servlets.

Conforme pase el tiempo se supone que constituirdn la base para la implementacion de otros
protocolos distintos de http.

-jJavax.servlet.http Ofrece la implementacion especifica de servlets para el protocolo http. En
estos paquetes se definen todas las clases e interfaces necesarias para la escritura de applets.
De hecho cuando se usen los servlets para gestionar conexiones http

usaremos las clases del paquete javax.servlet.http.

El ciclo de ejecucion de un servlet es andlogo al de un applet con ligeras diferencias.
Inicialmente el servlet debe extender a la clase HttpServlet:

import javax.servlet;

import javax.servlet.*;

import javax.servlet.http.*;

public class MiServlet extends HttpServlet{

}..

Para dotar de funcionalidad a un servlet se han de redefinir una seria de métodos que guardan
una analogia con los métodos de funcionamiento de un applet (init(), start(), stop(),
destroy()). public void init(ServletConfig config)

Cada vez que se inicia el servlet el servidor web llama a este método pasando un parametro de
la clase ServletConfig que guarda informacion de la configuracion del servlet y del contexto del
servidor web en el que se ejecuta. A través de ServletConfig se accede a los parametros de
inicializacion del servlet que se establecieron al configurar el servlet y a través de la interfaz
ServletContext (obtenido a partir del método getServietContext() de ServletConfig) se
accede a la informacidn del servidor web.

Aplicaciones Cliente Servidor Pagina 87.

Tec. En Ingenieria en Sistemas

El siguiente es un ejemplo simple de un servlet que escribe informacién en un fichero de registro
(el formato, ubicaciéon y nombre de este es dependiente del servidor web):

MiServiet.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

public class MiServlet extends HttpServlet{

public void init(ServletConfig config)

{ config.getServletContext().log(*Iniciado MiServlet a las” +new Date()); }

bs

En este método se han de realizar todas las operaciones Unicas en el ciclo de vida del servlet tal
como conexidn a BD de forma persistente y otras tareas de inicializacién. Dado que el servlet se
carga en memoria al iniciar el servidor web o al recibir la primera peticion (dependiendo de la
configuracidn) el método init() es llamado solo una vez, no cada vez que se realice una peticion.

- public void destroy()

Este método es analogo al método init() solo que sera llamado por el servidor web cuando el
servlet esta a punto de ser descargado de memoria (no cuando termina una peticiéon). En este
método se han de realizar las tareas necesarias para conseguir una finalizacion apropiada como
cerrar archivos y flujos de entrada de salida externos a la peticién, cerrar conexiones
persistentes a bases de datos, etc. Un punto importante es que se puede llamar a este método
cuando todavia esta ejecutdndose alguna peticion por lo que podria producirse un fallo del
sistema y una inconsistencia de datos tanto en archivos como en BD. Por eso debe retrasarse la
desaparicidon del servlet hasta que todas las peticiones hayan sido concluidas.

- public void service(HttpServietRequest request, HttpServietResponse response)
throws ServletException, IOException.

En este metodo se encuentra la mayor parte de la funcionalidad del servlet. Cada vez que se
realice una peticién se llamara a este metodo pasédndole dos parametros que nos permite
obtener informacidén de la peticidén y un flujo de salida para escribir la respuesta.

COMUNICACION CON EL CLIENTE (USUARIO).

Como se explicd anteriormente, los Servlets se han usado mas en la generaciéon de paginas web
dindmicas, y cuando se habla de dinamismo se refiere a dinamismo en la informacion no en la
interfaz.En la figura siguiente se muestra como se establece la comunicacion entre el Cliente y el
Servidor, en un ambiente de Web, por medio de la Tecnologia de Java Serviets.

Servidor Wel Cliente

v - Peticion

W Respuesta en HTML

Regueast Response

-
Servlet _ m
Informacion

Aplicaciones Cliente Servidor Pagina 88.

Tec. En Ingenieria en Sistemas

PROGRAMACION CON JAVA SERVLETS.
Interacion con el Cliente
Cuando un servlet acepta una llamada de un cliente, recibe dos objetos:

_ Un ServletRequest, que encapsula la comunicacidon desde el cliente al servidor.
_ Un ServletResponse, que encapsula la comunicacion de vuelta desde el servlet hacia el
cliente.

ServletRequest y ServletResponse son interfaces definidos en el paquete javax.servlet.

El Interface ServletRequest

El Interface ServletRequest permite al servlet acceder a:

Informacion como los nombres de los parametros pasados por el cliente, el protocolo (esquema)
que esta siendo utilizado por el cliente, y los nombres del host remote que ha realizado la
peticion y la del server que la ha recibido.

El stream de entrada, ServiletInputStream. Los Servlets utilizan este stream para obtener los
datos desde los clientes que utilizan protocolos como los métodos POST y PUT del HTTP.

Los interfaces que extienden el interface ServletRequest permiten al servlet recibir mas datos
especificos del protocolo. Por ejemplo, el interface HttpServletRequest contiene métodos para
acceder a informacién de cabecera especifica HTTP.

El Interface ServietResponse

El Interface ServletResponse le da al servlet los métodos para responder al cliente.

Permite al servlet seleccionar la longitud del contenido y el tipo MIME de la respuesta.
Proporciona un stream de salida, ServletOutputStream, y un Writer a través del cual el
servlet puede responder datos.

Los interfaces que extienden el interface ServletResponse le dan a los servlets mas
capacidades especificas del protocolo. Por ejemplo, el interface HttpServietResponse contiene
métodos que permiten al servlet manipular informacion de cabecera especifica HTTP.

Un Servlet HTTP maneja peticiones del cliente a través de su método service. Este método
soporta peticiones estandard de cliente HTTP despachando cada peticiéon a un método designado
para manejar esa peticion. Por ejemplo, el método service llama al método

doGet mostrado en el siguiente ejemplo:

public class SimpleServiet extends HttpServlet
{

/**

* Maneja el método GET de HTPP para construir una sencilla pagina Web.
*/

public void doGet (HttpServletRequest request,
HttpServietResponse response)

throws ServletException, IOException

{

PrintWriter out;

String title = "Salida de un Servlet Sencillo";

// primero selecciona el tipo de contenidos y otros campos de cabecera de la respuesta
response.setContentType("text/html");

// Luego escribe los datos de la respuesta

out = response.getWriter();
out.printin("<HTML><HEAD><TITLE>");
out.printin(title);
out.printin("</TITLE></HEAD><BODY>");
out.printin("<H1>" + title + "</H1>");
out.printin("<P>This is output from SimpleServlet.");
out.printin("</BODY></HTML>");

out.close();

}//Fin del Método doGet

}//Fin de la clase SimpleServlet

Aplicaciones Cliente Servidor Pagina 89.

Tec. En Ingenieria en Sistemas

Del ejemplo anterior, SimpleServiet extiende la clase HttpServiet, que implementa el
interface Servlet.

SimpleServlet sobreescribe el método doGet de la clase HttpServlet. Este método es llamado
cuando un cliente hace un peticion GET (el método de peticion por defecto de HTTP), y resulta
en una sencilla pagina HTML devuelta al cliente.

Dentro del método doGet

_La peticion del usuario esta representada por un objeto HttpServietRequest.
_ La respuesta al usuario esta representada por un objeto HttpServietResponse.

Como el texto es devuelto al cliente, el respuesta se envia utilizando el objeto Writer obtenido
desde el objeto HttpServietResponse.

Peticiones y Respuestas
Como se explico en el apartado anterior los métodos de la clase HttpServlet que manejan
peticiones de cliente toman dos argumentos:

_ Un objeto HttpServiletRequest, que encapsula los datos desde el cliente.
_ Un objeto HttpServietResponse, que encapsula la respuesta hacia el cliente.

Objetos HttpServietRequest

Un objeto HttpServietRequest proporciona acceso a los datos de cabecera HTTP, como
cualquier cookie encontrada en la peticién, y el método HTTP con el que se ha realizado la
peticion. El objeto HttpServletRequest también permite obtener los argumentos que el

cliente envia como parte de la peticién.

Para acceder a los datos del cliente

El método getParameter devuelve el valor de un pardmetro nombrado. Si nuestro parametro
pudiera tener mas de un valor, deberiamos utilizar getParameterValues en su lugar. El
método getParameterValues devuelve un array de valores del pardmetro nombrado. (El
método getParameterNames proporciona los nombres de los parametros.

Manejar Peticiones GET y POST

Para manejar peticiones HTTP en un servlet, extendemos la clase HttpServlet y sobrescribimos
los métodos del servlet que manejan las peticiones HTTP que queremos soportar. Este apartado
ilustra el manejo de peticiones GET y POST. Los métodos que manejan estas peticiones son
doGet y doPost.

_ Manejar Peticiones GET

Manejar peticiones GET implica sobreescribir el método doGet. El siguiente ejemplo muestra a
BookDetailServlet haciendo esto.

Los métodos explicados en Peticiones y Respuestas se muestran en negrita:

public class BookDetailServlet extends HttpServlet

{

public void doGet (HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

{

// selecciona el tipo de contenido en la cabecera antes de acceder a Writer
response.setContentType("text/html");
PrintWriter out = response.getWriter();

// Luego escribe la respuesta

out.printin("<html>" +

"<head> <title>Book Description</title></head>" +
)

//Obtiene el identificador del libro a mostrar

String bookId = request.getParameter("bookld");

Aplicaciones Cliente Servidor Pagina 90.

Tec. En Ingenieria en Sistemas

if (bookId !'= null)
{

// Obtiene la informacién sobre el libro y la imprime

b
out.printin("</body></html|>");
out.close();

b
e}

_ Manejar Peticiones POST

Manejar peticiones POST implica sobreescribir el método doPost. El siguiente ejemplo muestra a
ReceiptServlet haciendo esto.

Nuevamente, los métodos explicados en Peticiones y Respuestas se muestran en negrita:

public class ReceiptServilet extends HttpServlet

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException

{

// selecciona la cabecera de tipo de contenido antes de acceder a Writer
response.setContentType("text/html");

PrintWriter out = response.getWriter();

// Luego escribe la respuesta

out.printin("<html>" +

"<head> <title> Receipt </title>" +

)i

out.printin("<h3>Thank you for purchasing your books from us " +
request.getParameter("cardname") +

N

out.close();

b

El servlet extiende la clase HttpServlet y sobreescribe el método doPost. Dentro del método
doPost, el método getParameter obtiene los argumentos esperados por el servlet.

Para responder al cliente, el método doPost utiliza un Writer del objeto HttpServiletResponse
para devolver datos en formato texto al cliente. Antes de acceder al writer, el ejemplo selecciona
la cabecera del tipo de contenido. Al final del método doPost, después de haber enviado la
respuesta, el Writer se cierra.

Manejar Datos de Formularios

Si alguna vez has usado un motor de busqueda Web, visitado un tienda de libros on-line, etc.,
probablemente habras encontrado URLs de blsqueda con varios parametros como:
http://host/path?user=Marty+Hall&origin=bwi&dest=lax.

La parte posterior a la interrogacion (user=Marty+Hall&origin=bwi&dest=lax) es conocida
como datos de formulario, y es la forma mas comun de obtener datos desde una pagina Web
para un programa del lado del servidor. Puede afiadirse al final de la URL después de la
interrogacién (como arriba) para peticiones GET o enviada al servidor en una linea separada,
para peticiones POST.

Extraer la informacién necesaria desde estos datos de formulario es tradicionalmente una de las
partes mas tediosas de la programacion CGI.

1. Primero de todo, tenemos que leer los datos de una forma para las peticiones GET (en CGI
tradicional, esto se hace

Aplicaciones Cliente Servidor Pagina 91.

Tec. En Ingenieria en Sistemas

mediante QUERY_STRING), y de otra forma para peticiones POST (normalmente leyendo la
entrada estandard).

2. Segundo, tenemos que separar las parejas de los ampersands (&), luego separar los nhombres
de los parametros (a la izquierda de los signos igual) del valor del parametro (a la derecha de
los signos igual).

3. Tercero, tenemos que decodificar los valores. Los valores alfanuméricos no cambian, pero los
espacios son convertidos a signos mas y otros caracteres se convierten como %XX donde XX es
el valor ASCII (o ISO Latin-1) del caracter, en hexadecimal.

Por ejemplo, si alguien introduce un valor de “~hall, ~gates, y ~mcnealy" en un campo de texto
con el nombre "users" en un formulario HTML, los datos serian enviados como
"users=%7Ehall%2C+%7Egates%2C+y+%7Emcnealy".

4. Finalmente, la cuarta razon que hace que el andlisis de los datos de formulario sea tedioso es
que los valores pueden ser omitidos (por ejemplo, paraml=vall¶m2=¶m3=val3) y
un parametro puede tener mas de un valor y que el mismo parametro puede aparecer mas de
una vez (por ejemplo: paraml=vall¶m2=val2¶mi1=val3).

Una de las mejores caracteristicas de los servlets Java es que todos estos analisis de formularios
son manejados automaticamente.

Simplemente llamamos al método getParameter de HttpServletRequest, y suministramos el
nombre del pardmetro como un argumento. Observa que los nombres de parametros son
sensibles a la mayusculas. Hacemos esto exactamente igual que cuando los datos son enviados
mediante GET o como si los enviaramos mediante POST. El valor de retorno es un String
correspondiente al valor de la primera ocurrencia del pardmetro. Se devuelve un String vacio si
el parametro existe pero no tiene valor, y se devuelve null si no existe dicho parametro. Si el
parametro pudiera tener mas de un valor, como en el ejemplo anterior, deberiamos llamar a
getParameterValues en vez de a getParameter. Este devuelve un array de strings.
Finalmente, aunque en aplicaciones reales nuestros servlets probablemente tengan un conjunto
especifico de nombres de parametros por los que buscar. Usamos getParameterNames para
esto, que devuelve una Enumeration, cada entrada puede ser forzada a String y usada en una
Ilamada a getParameter.

Ejemplo: Leer Tres Parametros
Aqui hay un sencillo ejemplo que lee tres parametros llamados paraml, param2, y param3,
listando sus valores en una lista marcada.

Observamos que, aunque tenemos que especificar selecciones de respuesta (content type,
status line, otras cabeceras HTTP) antes de empezar a generar el contenido, no es necesario que
leamos los parametros de peticion en un orden particular.

También observamos que podemos crear facilmente servlets que puedan manejar datos GET y
POST, simplemente haciendo que su método doPost llame a doGet o sobreescribiendo service
(que llama a doGet, doPost, doHead, etc.). Esta es una buena practica estandard, ya que
requiere muy poco trabajo extra y permite flexibilidad en el lado del cliente.

TresParametros.java
Nota: este ejemplo también usa la clase Utilidad.java.

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import java.io.*;

public class TresParametros extends HttpServlet

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{ response.setContentType("text/html");

Aplicaciones Cliente Servidor Pagina 92.

Tec. En Ingenieria en Sistemas

PrintWriter out = response.getWriter();

String title = "Lectura de Tres parametros";
out.printin(Utilidad.headConTitle(title) +
"<BODY>\n" +

"<H1 ALIGN=CENTER>" + title + "</H1>\n" +
"\n" +

" parami1: "

+ request.getParameter("parami1") + "\n" +
" param2: "

+ request.getParameter("param2") + "\n" +
" param3: "

+ request.getParameter("param3") + "\n" +
"\n" +

"</BODY></HTML>");

public void doPost(HttpServietRequest request, HttpServietResponse response)
throws ServletException, IOException

{

doGet(request, response);

by

b

Aplicaciones Cliente Servidor Pagina 93.

Tec. En Ingenieria en Sistemas

Escuela Especializada

en Ingenieria 5![‘]\1

I'TCA v Ferane Guia Practica No 9 o=
Servlets Basico

| OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Conocer la jerarquia de clases y paquetes utilizados para la implementacion de
Servlets de Java.
Conocer la estructura basica de programas Java Servlets.
Utilizar HTML en programas de Java.
Crear formularios en HTML que envien parametros a servlets de java.
Crear Clases de Java servlets que utilicen los métodos en envio y recepcion de
informacién (doGet y doPost)

PROCEDIMIENTO

DIFERENCIAS ENTRE LAS TECNOLOGIAS CGI Y SERVLET

La tecnologia Servlet proporciona las mismas ventajas del lenguaje Java en cuanto a
portabilidad (“write once, run anywhere”) y seguridad, ya que un servlet es una clase de
Java igual que cualquier otra, y por tanto tiene en ese sentido todas las caracteristicas del
lenguaje. Esto es algo de lo que carecen los programas CGI, ya que hay que compilarlos para
el sistema operativo del servidor y no disponen en muchos casos de técnicas de comprobacion
dinamica de errores en tiempo de ejecucion.

Otra de las principales ventajas de los servlets con respecto a los programas CGI, es la del
rendimiento, y esto a pesar de que Java no es un lenguaje particularmente rapido. Mientras que
los es necesario cargar los programas CGI tantas veces como peticiones de servicio existan por
parte de los clientes, los servlets, una vez que son llamados por primera vez, quedan activos
en la memoria del servidor hasta que el programa que controla el servidor los
desactiva. De esta manera se minimiza en gran medida el tiempo de respuesta.

El HttpServletRequest tiene métodos que nos permiten encontrar informacién entrante como
datos de un FORM, cabeceras de peticion HTTP, etc. El HttpServletResponse tiene métodos
que nos permiten especificar lineas de respuesta HTTP (200, 404, etc.), cabeceras de respuesta
(Content-Type, Set-Cookie, etc.), y, todavia mas importante, nos permiten obtener un
PrintWriter usado para enviar la salida de vuelta al cliente. Para servlets sencillos, la mayoria del
esfuerzo se gasta en sentencias println que generan la pagina deseada Tenemos que importar
las clases de los paquetes java.io (para PrintWriter, etc.), javax.servlet (para HttpServlet, etc.),
y javax.servlet.http (para HttpServletRequest y HttpServletResponse).

Un Sencillo Servlet que Genera Texto Normal

Aqui tenemos un servlet que sélo genera texto normal. La siguiente seccion mostrara el caso
mas usual donde se generara HTML.

Ejemplol.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Ejemplolextends HttpServlet

{

public void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

{

PrintWriter out = response.getWriter();

Aplicaciones Cliente Servidor Pagina 94.

Tec. En Ingenieria en Sistemas

out.printIn("Este es mi Primer Servlet en Programacion IV");
b
b

Un Serviet que Genera HTML

La mayoria de los servlets generan HTML, no texto normal como el ejemplo anterior. Para hacer
esto, necesitamos dos pasos adicionales, decirle al navegador que estamos devolviendo HTML. y
modificar la sentencia println para construir una pagina Web legal.

El primer paso se hace configurando la cabecera de respuesta Content-Type. En general, las
cabeceras de respuesta se configuran mediante el método setHeader de ttpServletResponse,
pero seleccionar el tipo de contenido es una tarea muy comun y por eso tiene un método
especial setContentType sdlo para este propdsito. Observa que necesitamos configurar las
cabeceras de respuesta antes, de devolver algin contenido mediante PrintWriter. Aqui hay un
ejemplo:

Ejemplo2.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Ejemplo2 extends HttpServlet

{

public void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.printin("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n" +

"<HTML>\n" +

"<HEAD><TITLE>Programacion IV</TITLE></HEAD>\n" +
"<BODY>\n" +

"<center><H1>Ejemplo No 2 de Java Servlets</H1></center>\n" +
"</BODY></HTML>");

b

b

La linea DOCTYPE es técnicamente requerida por la especificacion HTML, y aunque la mayoria de
los navegadores Web la ignoran, es muy util cuando se envian paginas a validadores de formato
HTML. Estos validadores comparan la sintaxis HMTL de las paginas comparandolas con la
especificacion formal del HTML, y usan la linea DOCTYPE para determinar la version de HTML con
la que comparar.

En muchas paginas web, la linea HEAD no contiene nada mas que el TITLE, aunque los
desarrolladores avanzados podrian querer incluir etiquetas META y hojas de estilo. Pero para el
caso sencillo, crearemos un método que crea un titulo y devuelve las entradas DOCTYPE, HEAD,
y TITLE como salida. Aqui esta el cddigo:

Utilidad.java
public class Utilidad
{

public static final String DOCTYPE = "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0
Transitional//EN\">";

public static String headConTitle(String title)

{

return(DOCTYPE + "\n" +

"<HTML>\n" +

Aplicaciones Cliente Servidor Pagina 95.

Tec. En Ingenieria en Sistemas

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");

b
bs

Aqui tenemos un nuevo ejemplo que instancia a la Clase Utilidad:
Ejemplo3.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Ejemplo3 extends HttpServiet

{

public void service(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.printin(Utilidad.headConTitle("Ejemplo Utilizando dos Clases") +
"<BODY>\n" +

"<H1>Este es el Ejemplo No. 3</H1>\n" +
"</BODY></HTML>");

}

b

METODO SERVICE.

public void service(HttpServletRequest request, HttpServietResponse response)
throws ServletException, IOException.

En este método se encuentra la mayor parte de la funcionalidad del servlet. Cada vez que se
realice una peticidon se llamara a este método pasandole dos parametros que nos permite
obtener informacion de la peticion y un flujo de salida para escribir la respuesta.

Andlogamente tenemos otra serie de métodos que realizan la implementacion de respuesta a
métodos de comunicacidn del protocolo http 1.1 como son GET y POST. Estos son
respectivamente:

_ public void doGet(HttpServietRequest request, HttpServletResponse response)
_ public void doPost(HttpServietRequest request, HttpServietResponse response)

Los dos parametros que recibe service() son esenciales para el funcionamiento del servlet por
lo que pasaremos a verlos con mas profundidad:

Los dos parametros que recibe service() son HttpservletRequest y HttpServletResponse

HttpServietRequest

Esta interfaz derivada de ServletRequest proporciona los métodos para recuperar la
informacién de la peticién del usuario asi como del propio usuario. Sefialaremos los mas
importantes:

_ public abstract String getRemoteHost(). Devuelve el nombre del ordenador que realizd la
peticion

_ public abstract String getParameter(String parameter). Devuelve el valor del parametro
parameter o null si dicho pardmetro no existe.

_ public abstract String[] getParameterValues(String parameter). Devuelve un array con
los valores del parametro especificado por parameter o null si dicho parametro no existe.

_ public abstract Enumeration getParameterNames(). Devuelve una Enumeration de los
nombre de los parametros empleados en la peticion.

Aplicaciones Cliente Servidor Pagina 96.

Tec. En Ingenieria en Sistemas

HttpServietResponse
Se trata de un interfaz derivada de ServletResponse que proporciona los métodos para realizar
la respuesta al cliente que origind la peticion. Sefialaremos los mas importantes:

public abstract PrintWriter getWriter(). Permite obtener un objeto PrintWriter para escribir
la respuesta.
public abstract setContentType(String). Permite establecer el tipo MIME de la respuesta

EJEMPLOS DE SERVLETS CON LECTURA DE PARAMETROS

A continuacion realizaremos un sencillo de ejemplo de un servlet que recibird como parametro
un nombre y saludara al cliente que realizo la peticion. Para ello construiremos una pagina web
con un formulario que nos servira para enviar la peticion al servlet.

<html>

<head> <title>Ejemplo de servlet con Parametros</title> </head>
<body>

<h1>Introduzca su nombre y pulse el boton de enviar</h1><hr>
<FORM ACTION="/servlet/HolaServlet" METHOD="post">

Nombre: <INPUT TYPE="text" NAME="nombre" size="30">

<INPUT TYPE="submit" NAME="enviar" VALUE="Enviar">

</form>

</body>

</html>

A continuacion se muestra el codigo del servlet. Este codigo fuente se compilaria y se situaria en
el directorio configurado en el servido web para la ejecucion de servlets(en nuestro caso sera
/servlet):

HolaServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HolaServlet extends HttpServiet

{

/*

* En este caso se ha optado por redefinir el metodo doPost(), pudiéndose
* igualmente haberse optado por redefinir service().Lo que seria incorrecto
* es redefinir doGet() ya que la peticion se realizara por el método post
*/

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

//Se obtiene el valor del parametro enviado

String name = request.getParameter("nombre");

//Se establece el contenido MIME de la respuesta
response.setContentType("text/html");

//Se obtiene un flujo de salida para la respuesta

PrintWriter out;

out = response.getWriter();

//Se escribe la respuesta en HTML estandar

out.printin("<html|>");

out.printin("<head>");

out.printIn("<title> Respuesta de HolaServlet</title>");
out.printin("<head>");

out.printin("<body>");

out.printin("<h1>El servlet ha generado la pagina de Respuesta</h1><hr>");
out.printin("
");

out.printIn("");

out.printin("<h2>Hola " + name + "</h2>");

Aplicaciones Cliente Servidor Pagina 97.

Tec. En Ingenieria en Sistemas

out.printin("");

out.printin("</body>");

out.printin("</htmli>");

// Se fuerza la descarga del buffer y Se cierra el canal
out.flush();

out.close();

} //fin doPost()

}//fin clase

Ejemplo 2 usando formularios de HTML.

El formulario contendra dos campos de tipo TEXT donde el visitante introducira su nombre y
apellidos. A continuacion, debera indicar la opinidn que le merece la pagina visitada eligiendo
una entre tres posibles (Buena, Regular y Mala), Por Gltimo, se ofrece al usuario la posibilidad
de escribir un comentario si asi lo considera oportuno.

El cédigo correspondiente a la pdgina HTML que contiene este formulario es el siguiente:

<HTML>

<HEAD>

<TITLE>Envie su opinion</TITLE>

</HEAD>

<BODY>

<H2>Por favor, envienos su opinion acerca de este sitio web</H2>
<FORM ACTION="/servlet/ServletOpinion" METHOD="POST">
Nombre: <INPUT TYPE="TEXT" NAME="nombre" SIZE=15>

Apellidos: <INPUT TYPE="TEXT" NAME="apellidos" SIZE=30><P>
Opinién que le ha merecido este sitio web

<INPUT TYPE="RADIO" CHECKED NAME="opinion" VALUE="Buena">Buena

<INPUT TYPE="RADIO" NAME="opinion" VALUE="Regular">Regular

<INPUT TYPE="RADIO" NAME="opinion" VALUE="Mala">Mala<P>
Comentarios

<TEXTAREA NAME="comentarios" ROWS=6 COLS=40>
</TEXTAREA><P>

<INPUT TYPE="SUBMIT" NAME="botonEnviar" VALUE="Enviar">
<INPUT TYPE="RESET" NAME="botonLimpiar" VALUE="Limpiar">
</FORM>

</BODY>

</HTML>

El servlet que gestionara toda la informacién del formulario se llamara ServletOpinion. Este
servlet se limitara a responder al usuario con una pagina HTML con la informacién introducida en
el formulario, dejando para un posterior apartado el estudio de cdmo se almacenarian dichos
datos. El cédigo fuente de la clase ServietOpinion es el siguiente:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ServletOpinion extends HttpServiet
{
// Declaracion de variables miembro correspondientes a

// los campos del formulario

private String nombre=null;

private String apellidos=null;

private String opinion=null;

private String comentarios=null;

// Este método se ejecuta una Unica vez (al ser inicializado el servlet)
// Se suelen inicializar variables y realizar operaciones costosas en

// tiempo de ejecucion (abrir ficheros, bases de datos, etc)

public void init(ServletConfig config) throws ServletException

Aplicaciones Cliente Servidor Pagina 98.

Tec. En Ingenieria en Sistemas

{

// Llamada al método init() de la superclase (GenericServlet)

// Asi se asegura una correcta inicializacién del servlet
super.init(config);

System.out.printIn("Iniciando ServletOpinion...");

} // fin del método init()

// Este método es llamado por el servidor web al "apagarse" (al hacer
// shutdown). Sirve para proporcionar una correcta desconexion de una
// base de datos, cerrar ficheros abiertos, etc.

public void destroy()

{
System.out.printIn("No hay nada que hacer...");

} //fin del método destroy()

// Método llamado mediante un HTTP POST. Este método se llama

// automaticamente al ejecutar un formulario HTML

public void doPost (HttpServietRequest req, HttpServietResponse resp)
throws ServletException, IOException

{
// Adquisicion de los valores del formulario a través del objeto req
nombre=req.getParameter("nombre");
apellidos=reqg.getParameter("apellidos");
opinion=req.getParameter("opinion");
comentarios=req.getParameter("comentarios");

// Devolver al usuario una pagina HTML con los valores adquiridos
devolverPaginaHTML(resp);

} // fin del método doPost()

public void devolverPaginaHTML(HttpServietResponse resp)
throws ServletException, IOException

{
// En primer lugar se establece el tipo de contenido MIME de la respuesta
resp.setContentType("text/html");

// Se obtiene un PrintWriter donde escribir (sdlo para mandar texto)
PrintWriter out = null;

out=resp.getWriter();

// Se genera el contenido de la pagina HTML

out.printin("<html|>");

out.printin("<head>");

out.printin("<title>Valores recogidos en el formulario</title>");
out.printin("</head>");

out.printin("<body>");

out.printin("Valores recogidos del ");
out.printin("formulario: ");

out.printin("<p>Nombre: "+nombre+"");
out.printin("
<fontsize=+1>Apellido: "+
apellidos+"");
out.printin("<p> Opinién: <i>" + opinion +
"</i>");

out.printIn("
Comentarios: " + comentarios +
"");

out.printin("</body>");

out.printin("</htmli>");

// Se fuerza la descarga del buffer y se cierra el PrintWriter,

// liberando recursos de esta forma. IMPORTANTE

out.flush();

out.close();

} // fin de devolverPaginaHTML()

// Funcion que permite al servidor web obtener una pequefia descripcidon del
// servlet, qué cometido tiene, nombre del autor, comentarios

// adicionales, etc.

Aplicaciones Cliente Servidor Pagina 99.

Tec. En Ingenieria en Sistemas

public String getServletInfo()
{
return "Este servlet lee los datos de un formulario" +
"y los muestra en pantalla";

} // fin del método getServletInfo()

bs

Ejemplo 3: Listar todos los Datos del Formulario

Aqui hay un ejemplo que busca todos los nombres de parametros que fueron enviados y los
pone en una tabla. Ilumina los parametros que tienen valor cero asi como aquellos que tienen
multiples valores. Primero busca todos los nombres de pardmetros mediante el método
getParameterNames de HttpServietRequest. Esto devuelve una Enumeration. Luego, pasa
por la Enumeration de la forma estandard, usando hasMoreElements para determinar cuando
parar y usando nextElement para obtener cada entrada. Como nextElement devuelve un
Object, fuerza el resultado a String y los pasa a getParameterValues, obteniendo un array
de Strings. Si este array solo tiene una entrada y sélo contiene un string vacio, el parametro no
tiene valores, y el servlet genera una entrada "No Value" en italica. Si el array tiene mas de una
entrada, el parametro tiene multiples valores, y se muestran en una lista bulleteada. De otra
forma, el Unico valor principal se sitda en la tabla.

MostrarParametros.java
Nota: este servlet también usa Utilidad.java, mostrado en la guia anterior.

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Muestra todos los parametros via

* GET o POST. Especialmente los que no poseen valor o que poseen
* valores Multiples.

*/

public class MostrarParametros extends HttpServlet

{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Reading All Request Parameters”;
out.printin(Utilidad.headConTitle(title) +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=CENTER>" + title + "</H1>\n" +

"<TABLE BORDER=1 ALIGN=CENTER>\n" +

"<TR BGCOLOR=\"#FFADOO\">\n" +

"<TH>Parameter Name<TH>Parameter Value(s)");

Enumeration paramNames = request.getParameterNames();
while(paramNames.hasMoreElements())

{
String paramName = (String)paramNames.nextElement();
out.printin("<TR><TD>" + paramName + "\n<TD>");

String[] paramValues = request.getParameterValues(paramName);
if (paramValues.length == 1)

{
String paramValue = paramValues[0];
if (paramValue.length() == 0)
out.print("<I>No Value</I>");

else

out.print(paramValue);

else

Aplicaciones Cliente Servidor Pagina 100.

Tec. En Ingenieria en Sistemas

{
out.printin("");

for(int i=0; i<paramValues.length; i++) {
out.printin("" + paramValues[i]);

b
out.printin("");
}//fin del while

b
out.printin("</TABLE>\n</BODY></HTML>");

}//Fin de doGet

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
doGet(request, response);
¥
b

Aqui tenemos un formulario HTML que envia un nimero de parametros a este servlet.

Usa POST para enviar los datos (como deberian hacerlo todos los formularios que tienen
entradas PASSWORD), demostrando el valor de que los servlets incluyan tanto doGet como
doPost.

EnviarParametros.html

<HTML>

<HEAD> <TITLE>A Sample FORM using POST</TITLE> </HEAD>

<BODY BGCOLOR="#FDF5E6">

<H1 ALIGN="CENTER">Un Ejemplo de Formulario Utilizando POST</H1>

<hr color="#800000" size="3">

<p>

<FORM ACTION="/servlet/MostrarParametros" METHOD="POST">

Cddigo de Producto: <INPUT TYPE="TEXT" NAME="itemNum" size="20">

Cantidad: <INPUT TYPE="TEXT" NAME="quantity" size="20">

Precio Unitario: <INPUT TYPE="TEXT" NAME="price" VALUE="4$" size="20">

<HR>

Nombre: <INPUT TYPE="TEXT" NAME="firstName" size="20">

Apellido: <INPUT TYPE="TEXT" NAME="lastName" size="20">

Iniciales: <INPUT TYPE="TEXT" NAME="initial" size="20">

Direccion: <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

Tarjeta de Crédito:

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Visa">Visa

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Master Card">Master Card

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Amex">American Express

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Discover">Discover

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Java SmartCard">Java SmartCard

Numero de Tarjeta de Crédito:

<INPUT TYPE="PASSWORD" NAME="cardNum" size="20">

Repita el Nimero de Tarjeta de Crédito:

<INPUT TYPE="PASSWORD" NAME="cardNum" size="20">

<CENTER>

<INPUT TYPE="submit" VALUE="Ordenar">

</CENTER>

</FORM>

</BODY>

</HTML>

Aplicaciones Cliente Servidor Pagina 101.

Tec. En Ingenieria en Sistemas

EJERCICIOS

1. Crear una clase “Encabezado” cuyos métodos puedan ser Utilizados por otras clases. El
objetivo es que la clase Encabezado contenga un método que reciba como parametros el Titulo y
el Mensaje de Encabezado y pueda generar el HTML respectivo.

2. Escribir una clase “Mensajes” cuyos métodos puedan ser utilizados por otras clases. La clase
debe retornar un Mensaje en HTML con una imagen, es decir, poseera un método que reciba
como parametros el mensaje, y un tipo de mensaje por medio del cual de desplegara una
imagen diferente.

Ejercicio No. 2

Este es el Mensaje:

Q

El programa ha cometido un Error.

Aplicaciones Cliente Servidor Pagina 102.

Tec. En Ingenieria en Sistemas

oy
B Ingonieris Clase N° 10 g@m}
ITCA v cerane Acceso a Base de Datos %w
con Java Servlets
| OBJETIVOS

Al finalizar la clase, el estudiante sera capaz de:
e Definir los diferentes medios de Conectividad con Bases de Datos en JAVA
e |dentificar como se establece la Conexion por medio de ODBC

DESARROLLO

La API JBDC es una interfaz de acceso a RDBMS (Relational Database Management System)
independiente de la plataforma y del gestor de bases de datos utilizado. Se relaciona muy a
menudo con el acréonimo ODBC por lo que se suele expresar como Java Database
Connectivity pero oficialmente, segun Javasoft, JDBC no significa nada ni es acronimo de nada.

El API consiste en una serie de interfaces Java implementadas por un controlador. Este
programa de gestion se encarga de la traduccion a las llamadas estandar que requiere la base
de datos compatible con el. De esta manera el programador puede abstraerse de la
programacion especifica de la base de datos creando cédigo que funcionara para todas los
RDBMS que cuenten con un driver JDBC con solo cambiar tal driver.

En la actualidad se encuentran drivers JDBC para todos los sistemas de gestion de bases de
datos mas populares(e incluso podriamos decir existentes) como Informix, Oracle, SQL Server,
DB2, InterBase, SyBase... y otros productos de indole no comercial como mSql, mySql y
PostGreSql, etc.

Aun asi existe un tipo especial de drivers denominados puentes JDBC-ODBC que traducen las
llamadas en JDBC a llamadas en el estandar de comunicacién con bases de datos desarrollado
por Microsoft ODBC por lo que en ultimo termino siempre se podra utilizar uno de estos drivers
ya que la totalidad de los sistemas de gestion de bases de datos cuentan con un driver de este
ultimo tipo.

El paquete java.sql
Consta de una seria de clases e interfaces de las cuales pasaremos a discutir las mas
importantes:

Driver

Se trata de una clase que implementa el controlador JDBC especifico de la base de datos y es
suministrado por el proveedor de bases de datos. Junto a la clase DriverManager permite cargar
y descargar los controladores de forma dindmica. El controlador de sirve de una cadena para
localizar y acceder a recursos dentro la base de datos con una sintaxis muy parecida a una URL.
En todo caso esta cadena sera de la forma:

jdbc:<controlador>://<servidor>:<puerto>/<base de datos>

Antes de realizar la conexion con la base de datos se debe haber cargado en memoria el
controlador para lo que se usa el método estatico de la clase Class forName(String).

Connection

Esta interfaz representa una sesion persistente con la base de datos que es devuelta por el
Driver. Nos permite utilizar transacciones (si el DBMS lo admite) asi como obtener una interfaz
para la ejecucién de instrucciones SQL.

Statement

Aplicaciones Cliente Servidor Pagina 103.

Tec. En Ingenieria en Sistemas

Esta interfaz se trata de un vehiculo para la ejecucidn de sentencias SQL a la base de datos y la
extraccién de resultados. A este respecto hay que sefialar que JDBC acepta el estandar SQL-92
como minimo exigible por lo que implementaciones nuevas y/o dependientes del DBMS pueden
no estar admitidas.

ResultSet

Representa un conjunto de resultados de forma abstracta(esto es una “tabla”). Dependiendo de
su creacion permite acceso secuencial o aleatorio y presenta una serie de métodos para obtener
informacion de los resultados y para movernos por el conjunto.

Una vez vistas las clases e interfaces para la gestion de consultas JDBC veremos los pasos a
seguir para realizar una consulta a la base de datos. Inicialmente se debe cargar en memoria el
controlador JDBC que vayamos a usar:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Esta sentencia hace que la JVM busque en todas las rutas especificadas por el CLASPATH la clase
correspondiente al driver y la cargue en memoria de tal manera que este lista para posteriores
usos. Seguidamente se debe realizar la conexidn con la base de datos:

/*

* Se usa ahora un driver Oracle para acceder a la maquina local y a la
tabla Ejemplo:

*/

String Url = "jdbc:oracle:/ /localhost:8080/Ejemplo™;
Connection conn = DriverManager.getConnection(url);

NOTA: También existen versiones de este Ultimo método que permiten realizar la conexién con
la BD especificando
un nombre de usuario y una contrasefia.

Ahora creamos una sentencia para poder interactuar con la BD mediante el uso de SQL:

Statement stm = conn.createStatement();

Ahora se deberian usar algunos métodos de la interfaz Statement dependientes del tipo de
sentencia SQL que queramos realizar:

/*

* La ejecucion de la instruccion SQL devuelve resultados

*/

ResultSet rs = stm.executeQuery("SELECT * FROM Ejemplo");

int numRowsUpdated = stm.executeUpdate("INSERT INTO Ejemplo VALUES
(" Pepe’, Sanchez’, 455986527)");

La interfaz ResultSet presenta métodos para obtener un tipo SQL convertido a un tipo Java a
partir del nombre de la columna de la forma getXXX(String nombreColumna) y se desplaza a
través de las filas usando el método bolean.

next()

que desplaza el indicador de posicion del ResultSet a la siguiente columna y devuelve un
booleano indicando si hay mas filas(inicialmente se encuentra en la primer fila).Las XXX
representan algun tipo Java como int, String, float, double...obteniéndose métodos como
getInt(string),getString(String),...

Ahora si disponemos de un objeto Resulset podemos usar sus métodos para desplazarnos por el
de la siguiente manera:

while(rs.next())

Aplicaciones Cliente Servidor Pagina 104.

Tec. En Ingenieria en Sistemas

{
System.out.print(rs.getString("Nombre")+ "-");
System.out.printin(rs.getFloat("Sueldo"));

3

El método getString es invocado sobre el objeto ResultSet: rs, por eso getString recuperara
(obtendrd) el valor almacenado en la columna Nombre de la fila actual de rs. El valor
recuperado por getString se ha convertido desde un VARCHAR de SQL a un String de Java y
se podria ser asignado a un objeto String s. Observe que como utilizamos la variable s en la
expresion print mostrada arriba, de esta forma:

String s = rs.getString("Nombre”);
print(s + "-");

La situacién es similar con el método getFloat excepto en que recupera el valor almacenado en
la columna Sueldo, que es un FLOAT de SQL, y lo convierte a un float de Java antes de
asignarlo a la variable n.

float n = rs.getFloat(“'Sueldo”);
print(n);

JDBC ofrece dos formas para identificar la columna de la que un método getXXX obtiene un
valor. Una forma es dar el nombre de la columna, como se ha hecho arriba. La segunda forma
es dar el indice de la columna (el nimero de columna), con un 1 significando la primera
columna, un 2 para la segunda, etc. Si utilizdramos el nimero de columna en vez del nombre de
columna el cédigo anterior se podria parecer a esto:

String s = rs.getString(1);
float n = rs.getFloat(2);

La primera linea de cddigo obtiene el valor de la primera columna de la fila actual de rs
(columna Nombre), convirtiéndolo a un objeto String de Java y asignandolo a s. La segunda
linea de codigo obtiene el valor de la segunda columna de la fila actual de rs, lo convierte a un
float de Java y lo asigna a n. Recuerda que el niumero de columna se refiere al niumero de
columna en la hoja de resultados no en la tabla original.

En suma, JDBC permite utilizar tanto el nombre cdmo el nimero de la columna como argumento
a un método getXXX. Utilizar el nimero de columna es un poco mas eficiente, y hay algunos
casos donde es necesario utilizarlo.

JDBC permite muchas lateralidades para utilizar los métodos getXXX para obtener diferentes
tipos de datos SQL.

Por ejemplo, el método getInt puede ser utilizado para recuperar cualquier tipo numérico de
caracteres. Los datos recuperados seran convertidos a un int; esto es, si el tipo SQL es
VARCHAR, JDBC intentara convertirlo en un entero. Se recomienda utilizar el método getInt
solo para recuperar INTEGER de SQL.

Ejemplo.

El siguiente ejemplo muestra primero una pagina en HTML, que pide al usuario la introduccion
de algunos datos.

Estos son enviados a traves de un método http a un servlet lamado Acceso.java que conecta a
la base de datos e introduce los parametros enviados por el usuario.

Ejemplodeclase8.htm

<HTML>

<HEAD>

<TITLE>Ejemplo de Programacion IV</TITLE>
</HEAD>

<BODY>

<H2>Introduzca los siguientes datos:</H2><hr>

Aplicaciones Cliente Servidor Pagina 105.

Tec. En Ingenieria en Sistemas

<FORM ACTION="/servlet/Acceso" METHOD="POST">

Nombre: <INPUT TYPE="TEXT" NAME="nombre" SIZE=15>

Apellidos: <INPUT TYPE="TEXT" NAME="apellidos"
SIZE=30><p>Sueldo:

<INPUT TYPE="TEXT" NAME="sueldo" SIZE=30></p>

<P>

<INPUT TYPE="SUBMIT" NAME="botonEnviar" VALUE="Enviar">
<INPUT TYPE="RESET" NAME="botonLimpiar" VALUE="Limpiar">
</FORM>

</BODY>

</HTML>

Acceso.java

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.sql.*;

public class Acceso extends HttpServiet

{

public void doGet(HttpServletRequest SOLICITUD,
HttpServletResponse RESPUESTA)

throws ServletException, IOException

{
RESPUESTA.setContentType("text/html");
PrintWriter SALIDA = RESPUESTA.getWriter();

/***/

/* GENERACION DEL TITULO Y ENCABEZADO DE LA PANTALLA
/***/
SALIDA.printin("<htmI>");

SALIDA.printIn("<head> ");

SALIDA.printin("<title> Ejemplo de Servlet, Clase #8 </title>");

SALIDA.printIn(" </head><body>");

// Programa Principal ***

PRINCIPAL(SALIDA,SOLICITUD,RESPUESTA);

SALIDA.printin("</body></html>");

SALIDA.flush();

SALIDA.close();

}//Fin del DoGet ***

private void PRINCIPAL(PrintWriter out,HttpServietRequest req,HttpServletResponse resp)
{
// Creando las propiedades necesarias para conectar con la Base de Datos ***
String USUBASE = "";

String PASS = "";

// Inicializando a null las variables a utilizar como elementos de conexion a la BD **
Connection CON1 = null; // Permite establecer la conexion con la BD

Statement STMT1 = null; // Permite indicar un accion sobre la BD

try

{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

CON1 = DriverManager.getConnection("jdbc:odbc: GUIA8", USUBASE, PASS);
STMT1 = CON1.createStatement();

// adquisicion de los valores del formulario

String nombre = req.getParameter("nombre");

String apellidos = req.getParameter("apellidos");

String sueldo = req.getParameter("sueldo");
/***/

/* Consulta para verificar si existe en la BD el Usuario actual
/***/

//Realizando la Consulta de Accion ***

Aplicaciones Cliente Servidor Pagina 106.

Tec. En Ingenieria en Sistemas

String Query = "INSERT INTO EJEMPLO VALUES(""+nombre+"','""+apellidos+"',"+sueldo+")";
int NumFilas = STMT1.executeUpdate(Query);

if(NumFilas==1)

{
out.printin("Valores recogidos del");

out.printin("formulario: <hr>");

out.printin("<p>Nombre:"+nombre+"");
out.printin("
Apellido: "
+apellidos+"");

out.printin("<p>Sueldo: "+

" $"+sueldo+"");

out.printIn("<hr><p><CENTER><H2>Valores actualizados "+

"con éxito</CENTER>");

b
else

out.printin("<P><HR><CENTER><H2>Error: Los Datos NO han sido
actualizados</CENTER>
");

//Cerrando parametros de Conexion

if (STMT1 != null)

{
STMT1.close();

¥
if (CON1 != null)

{
CON1.close();

b
b
catch (Exception ex)
{
out.printin("<h3>CONTACTAR A SOPORTE TECNICO...</h3><hr>");
out.printin(ex.getMessage());

b
b
// Definicidn del constructor de la clase ***
public void init(ServletConfig cfg)

throws ServletException

{
super.init(cfg);
b
// Definicion del destructor de la clase ***
public void destroy()

{
super.destroy();
b
/** Declaracion del la funcidn Post utilizada si las peticiones son enviadas a través del */
/* metodo Post de HTTP

*/

public void doPost(HttpServletRequest SOLICITUD,

HttpServietResponse RESPUESTA)

throws ServletException, IOException

{
doGet(SOLICITUD,RESPUESTA);
b

}// Fin de la clase Acceso ***

Aplicaciones Cliente Servidor Pagina 107.

Tec. En Ingenieria en Sistemas

EscuelalEspegia[izada ﬁ\‘ﬁ
nin nieri V4 V4 -
ITA’ EHDE Guia Practica No 10)
‘ Bases de Datos con Java Servlets S g
(Uso de Excepciones)
OBJETIVOS

Al finalizar la Practica, el estudiante sera capaz de:
e Realizar la conectividad a una base de datos utilizando el API JDBC, o por medio de una
fuente de datos ODBC.
e Utilizar consultas y Subconsultas de SQL a bases de Datos relacionales.
e Utilizar las excepciones en las Clases de Java Servlets.
e Lanzar y Capturar excepciones por medio de los métodos que proporciona Java para el
Manejo de los “Eventos Excepcionales”.

PROCEDIMIENTO

Interfaz de Conexion con el Gestor de Base de Datos.

Una de las tareas mas importantes y mas frecuentemente realizadas por los servlets es la
conexién a bases de datos mediante JDBC. Esto es debido a que los servlets son un componente
ideal para hacer las funciones de capa media en un sistema con una arquitectura de tres capas
como la mostrada en la figura siguiente.

Arquitectura cliente-servidor de 3 capas.

Este modelo presenta la ventaja de que el nivel intermedio mantiene en todo momento el control
del tipo de operaciones que se realizan contra la base de datos, y ademas, estd la ventaja
adicional de que los drivers JDBC no tienen que residir en la maquina cliente, lo cual libera al
usuario de la instalacion de cualquier tipo de driver. En cualquier caso, tanto el Servidor HTTP
como el Servidor de Base de Datos pueden estar en la misma maquina, aunque en sistemas
empresariales de cierta importancia esto no suele ocurrir con frecuencia.

Manejo de Errores utilizando Excepciones

Existe una regla de oro en el mundo de la programacioén: en los programas ocurren errores. Esto
es sabido. Pero équé sucede realmente después de que ha ocurrido el error? ¢{COmo se maneja
el error? ¢Quién lo maneja?, {Puede recuperarlo el programa?

El lenguaje Java utiliza excepciones para proporcionar capacidades de manejo de errores. En
esta guia aprenderas qué es una excepcion, como lanzar y capturar excepciones, qué hacer con
una excepcion una vez capturada, y como hacer un mejor uso de las excepciones heredadas de
las clases proporcionadas por el entorno de desarrollo de Java.

El término excepcidén es una forma corta da la frase "suceso excepcional"
siguiente forma:

Definicion: Una excepcion es un evento que ocurre durante la ejecucion del programa que
interrumpe el flujo normal de las sentencias.

y puede definirse de la

Capturar y Manejar Excepciones

El Bloque try

El primer paso en la escritura de una manejador de excepciones es poner la sentencia Java
dentro de la cual se puede producir la excepcién dentro de un bloque try. Se dice que el bloque
try gobierna las sentencias encerradas dentro de él y define el ambito de cualquier manejador de
excepciones (establecido por el bloque catch subsecuente) asociado con él.

Aplicaciones Cliente Servidor Pagina 108.

Tec. En Ingenieria en Sistemas

Los bloques catch
Después se debe asociar un manejador de excepciones con un bloque try proporcionandole uno
0 mas bloques catch directamente después del bloque try.

El bloque finally

El bloque finally de Java proporciona un mecanismo que permite a sus métodos limpiarse a si
mismos sin importar lo que sucede dentro del bloque try. Se utiliza el bloque finally para cerrar
ficheros o liberar otros recursos del sistema.

Capturar y Manejar Excepciones

Todos los métodos Java utilizan la sentencia throw para lanzar una excepcién. Esta sentencia
requiere un solo argumento, un objeto Throwable. En el sistema Java, los objetos lanzables son
ejemplares de la clase Throwable definida en el paquete java.lang. Aqui tienes un ejemplo de la
sentencia throw:

throw algunObjetoThrowable;

Si se intenta lanzar un objeto que no es 'lanzable', el compilador rehusa la compilacién del
programa y muestra un mensaje de error similar a éste:

testing.java:10: Cannot throw class java.lang.Integer; it must be a subclass
of class java.lang.Throwable.
throw new Integer(4);

Introduccion a SQL (Structured Query Language)

SQL (Structured Query Language o Lenguaje Estructurado de Consultas) es un lenguaje
empleado para crear, manipular, examinar y manejar bases de datos relacionales. Proporciona
una serie de sentencias estandar que permiten realizar las tareas antes descritas. SQL fue
estandarizado segun las normas ANSI (American National Standards Institute) en 1992, paliando
de alguna forma la incompatibilidad de los productos de los distintos fabricantes de bases de
datos (Oracle, Sybase, Microsoft, Informix, etc.). Esto quiere decir que una misma sentencia
permite a priori manipular los datos recogidos en cualquier base de datos que soporte el
estandar ANSI, con independencia del tipo de base de datos.

La mayoria de los programas de base de datos mas populares soportan el estandar SQL-92, y
adicionalmente proporcionan extensiones al mismo, aunque éstas ya no estan estandarizadas y
son propias de cada fabricante.

JDBC soporta el estandar ANSI SQL-92 y exige que cualquier driver JDBC sea compatible con
dicho estandar.

Para poder enviar sentencias SQL a una base de datos, es preciso que un programa escrito en
Java esté previamente conectado a dicha base de datos, y que haya un objeto Statement
disponible.

REGLAS SINTACTICAS

SQL tiene su propia sintaxis que hay que tener en cuenta, pues a veces puede ocurrir que sin
producirse ningln problema en la compilacion, al tratar de ejecutar una sentencia se produzca
algun error debido a una incorrecta sintaxis en la sentencia. Por tanto, serd necesario seguir las
siguientes normas:

SQL no es sensible a los espacios en blancol. Los retornos de carro, tabuladores y espacios en
blanco no tienen ningln significado especial. Las palabras clave y comandos estan delimitados
por comas (,), Y cuando sea necesario, debe emplearse el paréntesis para agruparlos.

Las consultas son insensibles a mayusculas y minusculas. Sin embargo, los valores almacenados
en las bases de datos si que son sensibles a las mismas, por lo que habra que tener cuidado al
introducir valores, efectuarcomparaciones, etc.

Aplicaciones Cliente Servidor Pagina 109.

Tec. En Ingenieria en Sistemas

A la hora de introducir un String, éste debera ir encerrado entre comillas simples, ya que de lo
contrario se produciran errores en la ejecucion.

Ejemplo Practico Utilizando Conexion a Bases de Datos y Manejo de Excepciones.

El siguiente archivo HTML, llama a la clase servlet “ListaAlumnos.java”, que mostrara un listado
de los alumnos pertenecientes a un grupo especifico elegido por el usuario en el siguiente
formulario.

<!-- fichero Formulario.htm -->

<html>

<head>

<title>Grupos de practicas</title>

</head>

<body>

<h2 align="center">Escoja el grupo de practicas cuya lista desea
ver</h2>

<hr>

<p>Grupos de Estudiantes: </p>
<form method="POST" action="/servlet/ListaAlumnos"
name="Formulario">

<p align="center">

<input type="radio" value="SIS11" checked name="GRUPO">SIS11
<input type="radio" name="GRUPO" value="SIS12">SIS12
<input type="radio" name="GRUPO" value="SIS13">SIS13
<input type="radio" name="GRUPO" value="SIS14">SIS14
</p>

</p></center>

<div align="center"><center><p>

<input type="submit" value="Enviar" name="BotonEnviar">

<input type="reset" value="Borrar" name="BotonBorrar">
</p></center></div>

</form>

</body>

</html>

1 Utilice los corchetes para referirse a campos o tablas que estan separadas por espacios en
blanco por Ej., [Detalle de pedidos]

// fichero ListaAlumnos.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.sql.*;

import java.util. *;

public class ListaAlumnos extends HttpServlet {

Connection conn = null;

// Vector que contendra los objetos Alumno

Vector vectorAlumnos=null;

//Método llamada mediante un HTTP POST

public void doPost (HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {

// se establece el tipo de contenido MIME de la respuesta
resp.setContentType("text/html");

// se obtiene un PrintWriter donde escribir (sélo para mandar texto)
PrintWriter out=resp.getWriter();

Aplicaciones Cliente Servidor Pagina 110.

Tec. En Ingenieria en Sistemas

// Obtencién del grupo de practicas

String grupo = null;

grupo = req.getParameter("GRUPQ");

if(grupo==null) {

resp.sendError(500, "Se ha producido un error en la lectura " +
"de la solicitud");

return;

b
out.printin("<html|>");

out.printin("<head>");

out.printin("<title>Lista de alumnos del grupo "+grupo+"</title>");
out.printin("</head>");

out.printin("<body>");

// url de la base de datos

String url=new String("jdbc:odbc:alumnos");

// Carga del Driver

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

catch(ClassNotFoundException ex) {
out.printin("Error al cargar el driver");
out.printin(ex.getMessage());

b

// Establecimiento de la conexién

try {
conn=DriverManager.getConnection(url,"","");
b

catch (SQLException sqlEx) {

out.printIn("Se ha producido un error al establecer "+
"la conexion con: "+url);
out.printin(sqlEx.getMessage());

b
// Consulta a la base de datos para obtener la lista de alumnos de un grupo
if(obtenerLista(resp,grupo)==0) {

// Mostrar la lista de alumnos mediante una pagina HTML
mostrarListaAlumnos(resp, grupo);

b

else if(obtenerLista(resp,grupo)==-3) {

resp.sendError(500, "No se ha encontrado el grupo: " +grupo);
b
else

resp.sendError(500, "Se ha producido un error en el acceso " +

"a la base de datos");

} // fin del método doPost()

public int obtenerLista(HttpServietResponse resp,String grupo)
throws ServletException, IOException {

// se obtiene un PrintWriter donde escribir (sélo para mandar texto)
PrintWriter out=resp.getWriter();

Statement stmt = null;

ResultSet rs = null;

String query = "SELECT DISTINCT Carnet, " +

"Nombre, "+

"Apellidos, "+

"GrupoPractica "+

"FROM TablaAlumnos WHERE GrupoPractica=""+grupo+"'";

// Ejecucién del query

try {

stmt=conn.createStatement();

rs=stmt.executeQuery(query);

Aplicaciones Cliente Servidor Pagina 111.

Tec. En Ingenieria en Sistemas

vectorAlumnos=new Vector();

// Lectura del ResultSet

// En Java2

while (rs.next()) {

Alumno temp=new Alumno();
temp.setNombre(rs.getString("Nombre"));
temp.setApellidos(rs.getString("Apellidos"));
temp.setCarnet(rs.getLong("Carnet"));
vectorAlumnos.addElement(temp);

b
if(vectorAlumnos.size()==0)
return -3;

return O;

b

catch (SQLException sql) {

out.printIn("Se produjo un error al crear el Statement");
out.printin(sqgl.getMessage());

return -1;

¥ finally {

// se cierra el Statment

if(stmt!=null) {

try {
stmt.close();

b

catch(SQLException e) {
out.printIn("Error al cerrar el Statement");
out.printin(e.getMessage());

return -2;

b
}
// se cierra el Connection
if(conn!=null) {

try {

conn.close();

¥

catch(SQLException e) {
out.printin("Error al cerrar el Statement");
out.printin(e.getMessage());

return -2;

b

b

} // fin del finally

3 // fin del método obtenerLista()

public void mostrarListaAlumnos(HttpServietResponse resp, String grupo)
throws ServletException, IOException {

// se obtiene un PrintWriter donde escribir (sélo para mandar texto)
PrintWriter out=resp.getWriter();

// se manda la lista

out.printin("<H2 align=\"center\">Lista de alumnos del grupo "+
grupo+"</H2><hr><p>");

out.printin("<div align=\"center\"><center>");

out.printin("");

out.printin("<table border=\"1\" width=\"70%\">");
out.printin("<tr>");

out.printin("<th width=\"25%\" bgcolor=\"#808080\">"+

"Carnet</td>");

out.printin("<th width=\"25%\" bgcolor=\"#808080\">"+

"Nombre</td>");
out.printin("<th width=\"25%\" bgcolor=\"#808080\">"+

Aplicaciones Cliente Servidor Pagina 112.

Tec. En Ingenieria en Sistemas

"Apellidos</td>");
out.printin("</tr>");

// Datos del Alumno por filas

Alumno alum=null;

for (int i=0; i<vectorAlumnos.size();i++) {
alum=(Alumno)vectorAlumnos.elementAt(i);

out.printin("<tr>");

out.printin("<td width=\"25%\">"+alum.getCarnet()+"</td>");
out.printin("<td width=\"25%\">"+alum.getNombre()+"</td>");
out.printIn("<td width=\"25%\">"+alum.getApellidos()+"</td>");
out.printin("</tr>");

b
out.printin("</table>");

out.printin("</center></div>");

out.printin("</body>");

out.printin("</htmI>");

// se fuerza la descarga del buffer y se cierra el PrintWriter
out.flush();

out.close();

} // fin del método mostrarListaAlumnos()

} // fin de la clase ListaAlumnos

Puede observarse que este servlet efectla la conexion con la base de datos cuyo DSN es
alumnos, y comprueba que la conexion se ha realizado con éxito.

La peticion del cliente es de tipo HTTP POST, por lo que se ha redefinido el método doPost(). En
este se lee el parametro GRUPO. En caso de que haya algun problema en la lectura de dicho
parametro, lanza un mensaje de error.

Una vez que se sabe cual es el grupo cuya lista quiere visualizar el cliente, se llama al método
obtenerlLista, que tiene como uno de sus parametros precisamente el nombre del grupo a
mostrar. En este método se realiza la consulta con la base de datos, mediante el método
executeQuery() de la interface Statement.

En este ejemplo, ademas, al leer los valores de la base de datos, estos son almacenados en un
Vector de objetos de la clase Alumno2, que ha sido creada para este ejemplo, y cuyo cédigo
puede observarse a continuacion.

public class Alumno {

// Definicidon de variables miembro

private String nombre;

private String apellidos;

private long carnet;

private String grupoPractica;

// Métodos para establecer los datos

public void setNombre(String nom) { nombre=nom; }
public void setApellidos(String apel) { apellidos=apel; }
public void setCarnet(long carn) { carnet=carn; }

public void setGrupoPractica(String grupo) { grupoPractica=grupo; }
// Métodos de recuperacion de datos

public String getNombre() { return nombre; }

public String getApellidos() { return apellidos; }

public long getCarnet() { return carnet; }

public String getGrupoPractica() { return grupoPractica; }
} // fin de la clase Alumno

Aplicaciones Cliente Servidor Pagina 113.

Tec. En Ingenieria en Sistemas

EJERCICIOS PROPUESTOS.

1. Crear una interfaz de usuario, utilizando un formulario de HTML, que pida el id de empleado,
nombre o Apellido, de tal forma que realice una busqueda por cualquiera de esos parametros y
muestre la informacién del empleado o los empleados que coincidan con los parametros de
busqueda.

2. Crear una interfaz de Usuario, para la busqueda de productos por categoria (ya sea por Id o
por nombre) por medio de un formulario, el servlet de java mostrara el nombre de la categoria
seleccionada y el listado de productos (id de producto, Nombre del producto, Nombre del
Proveedor, Precio Unitario y Existencia).

3. Crear un formulario que pida un Id de Cliente, y que llame a un servlet que muestre la
informacion del cliente (Nombre de la compafiia, Nombre del contacto, Cargo del contacto,
Direccion, Teléfono, Fax), y ademas muestre a parte los Id de Pedidos que ha realizado y la
fecha en que los realizo, el id de producto deberd ser un link a otro servlet, que mostrara la
informacion del Pedido realizado por el Cliente (id de pedido, fecha de pedido, la Fecha de
entrega) y el detalle de los productos que contiene el pedido, realizando el calculo del total a
pagar por el cliente (tomando en cuenta los descuentos).

Aplicaciones Cliente Servidor Pagina 114.

Tec. En Ingenieria en Sistemas

Escuela Especializada Clase Teorica N° 11 ﬁ"\
g — Utilidades para programar en LA
I'TCA wzFerane P prog éoy’
JAVA Serviets —
| OBJETIVOS

Al finalizar, el estudiante sera capaz de:
e Definir conceptos sobre la Tecnologia de Internet

| DESARROLLO

Equivalentes Servlet a la Variables Estandar CGI
Aunque probablemente tiene mas sentido pensar en diferentes fuentes de datos (datos de
peticion, datos de servidor, etc.) como distintas, los programadores experimentados en CGI

podrian

encontrar

muy util la siguiente

tabla.

Asumimos que request es el

HttpServiletRequest suministrado a los métodos doGet y doPost.
Variable CGI Significado Acceso desde doGet o doPost

Variable CGI Significado Acceso desde doGet o doPost
Si se suministro una cabecera
AUTH_TYPE Authorization, este es el esguema request.getAuthTypel)

especificado (basic o digest)

CONTENT_LENGTH

Solo para peticiones POST, el numero de
bytes enviados.

Técnicamente, el equivalente es

String.value Cf{request.getContentLength()) un String})
pero probablemente querremos sdlo llamar a
request.getContentLength(), que devuelve un int.

CONTENT_TYPE

El tipo MIME de los datos adjuntos, si se
especifica.

request.getContent Typel)

DOCUMENT_ROOT

Path al directorio que corresponds con
hitp:/host/

netServietContext().getRealPath("") Chserva que era
request.getRealPath("/") en especificaciones servlet

anteriores.

HTTP XX YYY

Acceso a cabeceras arbitrarias HTTP

request.getHeader|" Xox-Yyy")

PATH_INFO

Informacicn de Path adiunto a la URL.
Coma los serviets, al contrario que los
programas estandards CGI, pueden hablar
con &l servidor, no necesitan tratar esto de
forma separada. La informacion del path
podria serenviada como parte normal de
los datos de formulario.

request.getPathinfo()

PATH_TRANSLATED

La informacion del path mapeado al path
real en el servidor. De nuevo, los servelts
no necesitan tener un caso especial para
esto.

reguest.getPathTranslatedi)

Para peticiones GET, son los datos
adjuntas como un gran string, con los
valores codificados. Raramente querremos

QUERY_STRING una fila de datos en los servlets: en su fequest getQueryString)
lugar, usaremos request.getParameter
para acceder a parametros individuales.

REMOTE ADDR La direccion IP del cliente que hizo la request. getRemote Addr()

peticion, por gjemplo "192.9.48.9",

REMOTE_HOST

El nombre de dominio totalmente
cualificado (por ejemplo "java.sun.com")
del cliente que hizo la peticion. Se
devuelve la direccion IP si no se puede

request.getRemoteHost()

Aplicaciones Cliente Servidor

Péagina 115.

Tec. En Ingenieria en Sistemas

Variable CGI Significado Acceso desde doGet o doPost

determinar.

REMOTE USER Ei se s_urini_rlistrc;) una cabece‘ra’ _
\wthorization, la parte del usuario.

El tipo de peticidn, que normalmente es

GET o POST, pero ocasionalmente puede

ser HEAD, PUT, DELETE, OPTIONS, ©

request.getRemoteUser()

REQUEST_METHOD request.getMethodi)

TRACE.
SCRIPT_NAME Path del servlet. request.getServietPath()
SERVER_NAME MNombre del Servidor Web. request.getServerName()
Té;nicameme._el gquivalente es _
SERVER PORT Puerto por el que escucha el servidor. String.value Cf{request.getServerPort()), que devuelve

un String. Mormalmente sélo querremos llamar a
request.getServerPor). que devuelve unint.

Mombre y version usada en la linea de
SERVER_PROTOCOL peticicn (porejemplo HTTR/A.0 0 request.getProtocol()
HTTP/1.1).
SERVER SOFTWARE Informacicn identificativa del servidor Web. jgetServietContext().getServerinfo()

Ejemplo: Leer las Variables CGI

Aqui tenemos un servlet que crea una tabla que muestra los valores de todas las variables CGI
distintas a HTTP_XXX_YYY, que son sélo cabeceras de peticion HTTP que se mostraron en la
pagina anterior.

MostrarCGIVariables.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Este servlet crea una tabla que muestra los valores de las variable CGI
*/

public class MostrarCGIVariables extends HttpServiet {

public void doGet(HttpServietRequest request,
HttpServietResponse response)

throws ServletException, IOException {
response.setContentType("text/html");

PrintWriter out = response.getWriter();

//Declaraciéon de una matriz para el almacenamiento de las variables CGI
String[][] variables = { { "AUTH_TYPE", request.getAuthType() },
{ "CONTENT_LENGTH", String.valueOf(request.getContentLength()) },
{ "CONTENT_TYPE", request.getContentType() },

{ "DOCUMENT_ROOT", getServiletContext().getRealPath("/") },

{ "PATH_INFO", request.getPathInfo() },

{ "PATH_TRANSLATED", request.getPathTranslated() },

{ "QUERY_STRING", request.getQueryString() },

{ "REMOTE_ADDR", request.getRemoteAddr() },

{ "REMOTE_HOST", request.getRemoteHost() },

{ "REMOTE_USER", request.getRemoteUser() },

{ "REQUEST_METHOD", request.getMethod() },

{ "SCRIPT_NAME", request.getServietPath() },

{ "SERVER_NAME", request.getServerName() },

{ "SERVER_PORT", String.valueOf(request.getServerPort()) },

{ "SERVER_PROTOCOL", request.getProtocol() },

{ "SERVER_SOFTWARE", getServletContext().getServerInfo() }

}i

String title = "Servlet de Ejemplo: Mostrar Variables CGI ";
out.printin(Utilidad.headConTitle(title) +

Aplicaciones Cliente Servidor Pagina 116.

Tec. En Ingenieria en Sistemas

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=CENTER>" + title + "</H1><hr><p>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n" +

"<TR BGCOLOR=\"#FFADOO\">\n" +

"<TH>Nombre de Variable CGI<TH>Valor");

for(int i=0; i<variables.length; i++) {

String varName = variables[i][0];

String varValue = variables[i][1];

if (varValue == null)

varValue = "<I>No Especificado </I>";
out.printin("<TR><TD>" + varName + "<TD>" + varValue);

}
out.printin("</TABLE></BODY></HTML>");

}

public void doPost(HttpServietRequest request,
HttpServietResponse response)

throws ServletException, IOException {
doGet(request, response);

by
b3

EL METODO valueOf()

Como es conveniente, la clase String proporciona un método estatico valueOf(). Se puede
utilizar este método para convertir variables de diferentes tipos a un String. Por ejemplo, para
imprimir el nUmero pi:

System.out.printin(String.valueOf(Math.PI));
Convertir Cadenas a Nimeros

La clase String no proporciona ningin método para convertir una cadena en un nimero. Sin
embargo, cuatro clases de los "tipos envolventes" (Integer, Double, Float, y Long) proporcionan
unos métodos de clase llamados valueOf() que convierten una cadena en un objeto de ese tipo.
Aqui tenemos un pequeno ejemplo del método valueOf() de la clase Float:

String piStr = "3.14159";
Float pi = Float.valueOf(piStr);
Métodos Accesores

Fraselnversa.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

/** Este servlet crea una tabla que muestra una frase a la Inversa
*/

public class Fraselnversa extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");

PrintWriter out = response.getWriter();

String title = "Servlet de Ejemplo #2: Uso de toString";
out.printin(Utilidad.headConTitle(title) +

"<BODY BGCOLOR=\"#FDF5E6\">\n" +

"<H1 ALIGN=CENTER>" + title + "</H1><hr><p>\n" +
"<TABLE BORDER=1 width=75% ALIGN=CENTER>\n" +
"<TR bgcolor= >\n");

String Fuente= "ESTA ES LA FRASE DE PRUEBA";

Aplicaciones Cliente Servidor Pagina 117.

Tec. En Ingenieria en Sistemas

out.printin("<td>La frase a la Original es: "4+ Fuente);
int i, len = Fuente.length();

StringBuffer destino = new StringBuffer(len);

for (i=(len-1);i>=0;i--)

{

destino.append(Fuente.charAt(i));

out.printin("<tr><td>La frase a la inversa es: "+ destino.toString());
out.printin("</TABLE></BODY></HTML>");

b

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doGet(request, response);

¥

b

Los métodos utilizados para obtener informacién de un objeto son conocidos como métodos
accesores. La clase FraseInversa utiliza dos métodos accesores de String para obtener
informacién sobre el string Fuente.

Primero utiliza el método accesor: length() para obtener la longitud de la cadena Fuente.

int len = Fuente.length();

Segundo, utiliza el método accesor: charAt() que devuelve el caracter que esta situado en la
posicion indicada en su argumento.

Fuente.charAt(i)

El caracter devuelto por charAt() es el que se afiade al StringBuffer destino. Como la variable
del bucle i empieza al final de Fuente y avanza hasta el principio de la cadena, los caracteres se
afiaden en orden inverso al StringBuffer. El método toString() convierte un objeto de otro tipo,
en este caso stringbuffer a un String.

METODOS DE HTTPSERLVETREQUEST Y HTTPSERVLETRESPONSE

los métodos de clase HttpServlet que puede redefinir el programador reciben como argumentos
un objeto HttpServietRequest y otro HttpServletResponse. La interface HttpServletRequest
proporciona métodos para obtener informacién acerca de la peticién del cliente, por otro lado, el
objeto de la interface HttpServletResponse permite enviar desde el servlet al cliente informacion
acerca del estado del servidor asi como establecer los valores del header del mensaje saliente,
en las siguientes tablas teneis los métodos mas Utiles de estas dos clases, también se afaden
los métodos de la clase ServletConfig del método init.

Clase HttpSerlvetRequest

GetCookies() Devuelve un array de cookies encontradas en la peticién
GetDateHe ader(String) Devuelve la fecha de la peticion

GetHeader({String) Devuelve el contenido del header HTTP de la peticidn
GethMethod() Devuelve el metodo de la peticion Get, Post, Put, etc
GetBemotelUser() Devuelve el nombre del usuario que esta haciendo la peticién
GetRequestedSessionld() Devuelve el id de sesion de la peticidn

GetHeaderMames() Devuelve el nombre del header HTTP

Aplicaciones Cliente Servidor Pagina 118.

Tec. En Ingenieria en Sistemas

Clase HitpServietResponse

AddCookie(Cookie) Sirve para afiadir una nueva cookie a la respuesta

Verifica si €l header HTTP del mensaje de respuesta contiene un

ContainsHeader{String) -
campo con el nombre especificado

SendRedirect(String) Redirige al cliente a la URL especificada

Envia un error de respuesta al cliente usando el code indicado y un

SendError(int) mensaje por defecto

Envia un errar de respuesta al cliente usando el code indicado y un

SendErroriint, String) _
mensaje por defecto

GRAFICOS DE BARRAS UTILIZANDO APPLETS.

Almacen "El Baratio"

' wbokadl de BSrberan vem@ide: ow el Ane 3801 Por Sacuroles

Salilol] . AS-LE ol 1
A A TECLA A
Ri Sl VRIS .

e
% = ..
Bl M8 L

iy
1
1]

e LR ELEE DL N S Ny R bl
u-n-Ju:-J.-.d.n- B i W el T
et B . T S .

El grafico anterior se crea a partir de un applet de java (Barchar2.class) Cuyos parametros son:

<applet code base ="DirectorioVirtual” code="Barchart2.class" width=273
height=197 align="left">

<!- ESTOS SON LOS PARAMETROS GLOBALES PARA EL GRAFICO >

<param name=title value="Aqui va el Titulo del Grafico"> <!- Titulo del grafico>
<param name=columns value=" n "> <!- numero de Barras en el Grafico>

<param name=orientation value="vertical"> <!- orientacion horizontal o vertical>
<param name=printval value="yes"> <!- deseas imprimir los valores de cada barra>
<param name=bgcolor value="f0c0a0"> <!- color en RGB para el contorno del applet>
<param name=insetcolor value="ffffe0"> <!- color en RGB para el fondo del grafico de
barras>

<!- ESTOS PARAMETROS DEFINEN CADA UNA DE LAS BARRAS EN EL GRAFICO >

<param name=c1_style value="striped">

Aplicaciones Cliente Servidor Pagina 119.

Tec. En Ingenieria en Sistemas

<param name=cl value="100">
<param name=cl1_color value="blue">
<param name=cl_label value="Q1">

<param name=cnh value="30">

<param name=cn_color value="darkGray">
<param name=cn_label value="Qn">
<param name=cn_style value="solid">
</applet>

DESCRIPCION DE LOS PARAMETROS

El grafico puede ser orientado Horizontal o verticalmente usando name=orientation value=, y
puede escoger “striped”(rayado) o “solid” (sélido) para cada una de las barras usando cn_style
= para la enésima barra.

El ancho de las barras es uniforme, de acuerdo a la escala y al tamafio de la etiqueta. El
parametro "printval" (imprimir valor) ya sea "yes" or "no", y los valores de las barras son
escritas al lado de ellas.

Utilice las variables del tag applet, height (altura) y width (ancho) para obtener la dimensién
correcta para el grafico (esta puede variar de acuerdo a la orientacién que le des al mismo).

Los valores para las barras pueden ser nimeros enteros o reales. Si utiliza notacion cientifica u
el exponente utiliza el siguiente formato: 1.546e78, no funcionard, pero si lo escribes
1.546e+78 si lo hara.

El color del fondo del marco del grafico se escoge con el parametro "bgcolor" y se escribe en 6
digitos con el formato RGB. Para el caso de los graficos Verticales, (orientacion = "vertical) un
segundo color es definido para el rectangulo dentro del grafico también en formato RGB con el
parametro "insetcolor" (el formato de grafico horizontal no utiliza esta definicidon del segundo
color)

Puede escoger entre los siguientes colores permitidos para las barras: red, green, darkGreen,
beige, blue, pink, magenta, cyan, white, yellow, gray, and darkGray. Si escoge otro color se
imprimira el color por defecto que es el Blue (Azul). Cualquier color puede ser definido para el
fondo del grafico y el rectangulo interior, pero no con todas las combinaciones el grafico sera
legible. Note que los colores de las barras son definidos por el nombre del color opuesto a los
colores del fondo y el rectdngulo interior del grafico que se especifican en formato RGB.

Aplicaciones Cliente Servidor Pagina 120.

Tec. En Ingenieria en Sistemas

Escuela Especializada
en Ingenieria

I'TCA vz Ferane

N
Guia Practica N° 11 %@?}
Graficos en Aplicaciones de Java o

| OBJETIVOS

Al finalizar la practica, el estudiante sera capaz de:

e Utilizar clases de java que han sido creadas para la elaboracién de graficas de barras.

e Crear Servlets de Java que generen paginas HTML que utilizan el applet para dibujar
graficos debarras.

e Conocer los parametros que utiliza el applet para la generacidn de graficas de barra.

e Recuperar informacion almacenada en bases de datos, mostrarla tablas de HTML y
mostrar el grafico respectivo en pantalla.

PROCEDIMIENTO

Utilizando graficos de barras en tus paginas.

En tus Paginas HTML puedes utilizar applet3 de Java para la generacion de graficas de barras a
partir de una tabla de resultados, lo que se visualiza en pantalla puede ser algo parecido a la
siguiente figura:

5 e s de Saralico de Rapas ~ucrzaell vt Laplorer = ‘!‘I'mjt
ckivo| Edatn B Erwebor - Hemsscnas. - A _ -1
Ereics O3 & Dk oot e Ty h8S - W8 |
[Btonde | et biocabostinmmcke MAcules Hm e e T
| _ B
Ejemplo de un Applet para la Generacion de Graficos de Barra.
R e]
wol =
oo DATO | PANTIDAD
i | i !
iy 3 Y ! o 4 |
=i 5 |
2 1ntl
G O Gl
Giialicd di (3801 ds o | lemgia
i s |

1. Obtener el cédigo binario del archivo Barchart2.clas4s y guardarlo en el mismo directorio de
sus archivos HTML (si tienes el archivo en un directorio diferente al archivo HTML que lo invoca,

deberas agregar la ruta a la especificacién del cédigo base del applet tag (como podras ver mas

adelante

2. inserte en su archivo HTML un tag de applet con los parametros apropiados. Por ejemplo, la
figura del grafico anterior fue creado por el siguiente codigo de applet insertado en un archivo
HTML normal. Donde los primeros 6 grupos de lineas especifican los parametros globales del

grafico y los siguientes grupos de 4 lineas representan cada parametro que debera ser un dato

Aplicaciones Cliente Servidor Pagina 121.

Tec. En Ingenieria en Sistemas

en el grafico de barras (el parametro “columns” especifica el numero nimero de barras que
dibuja el grafico):

<!- AQUI SE DECLARA EL TAG DEL APPLET >

<applet code="Barchart2.class" width=273 height=197 align="left">

<!- ESTOS SON LOS PARAMETROS GLOBALES PARA EL GRAFICO >

<param name-=title value="Grafico de Barras de Ejemplo"> <!- Titulo del grafico>
<param name=columns value="4"> <!- numero de Barras en el Grafico>

<param name=orientation value="vertical"> <!- orientacion horizontal o vertical>
<param name=printval value="yes"> <!- deseas imprimir los valores de cada barra>
<param name=bgcolor value="f0c0a0"> <!- color en RGB para el contorno del applet>
<param name=insetcolor value="ffffe0"> <!- color en RGB para el fondo del grafico de
barras>

<!- ESTOS PARAMETROS DEFINEN CADA UNA DE LAS BARRAS EN EL GRAFICO >

<param name=cl_style value="striped">

<param name=c1 value="100">

<param name=cl_color value="blue">

<param name=c1_label value="Q1">

<param name=c2_color value="red">

<param name=c2_label value="Q2">

<param name=c2 value="20">

<param name=c2_style value="solid">

<param name=c3 value="85">

<param name=c3_style value="striped">

<param name=c3_color value="magenta">

<param name=c3_label value="Q3">

<param name=c4 value="30">

<param name=c4_color value="darkGray">

<param name=c4_label value="Q4">

<param name=c4_style value="solid">

</applet>

EL CODIGO COMPLETO DEL EJEMPLO DE LA FIGURA ANTERIOR ES ESTE:

<html>

<head> <title>Ejemplo de Grafico de Barras</title> </head>

<body bgcolor="#ffffff">

<h1 align="center"> Ejemplo de un Applet para la Generacién de
Graficos de Barra.</h1>

<hr>

<p>

<center>

<table border="0" cellpadding="0" cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111"

width="100%" id="AutoNumberl">

<tr>

<td width="50%">

<applet code="Barchart2.class" width=273 height=197 align="left">

<param name=title value="Grafico de Barras de Ejemplo"> <!- Titulo del grafico>
<param name=columns value="4"> <!- numero de Barras en el Grafico>

<param name=orientation value="vertical"> <!- orientacién horizontal o vertical>
<param name=printval value="yes"> <!- deseas imprimir los valores de cada barra>
<param name=bgcolor value="f0c0a0"> <!- color en RGB para el contorno del applet>
<param name=insetcolor value="ffffe0"> <!- color en RGB para el fondo del grafico de barras>
<param name=cl_style value="striped">

<param name=cl value="100">

<param name=cl_color value="blue">

<param name=cl_label value="Q1">

<param name=c2_color value="red">

<param name=c2_label value="Q2">

Aplicaciones Cliente Servidor Pagina 122.

Tec. En Ingenieria en Sistemas

<param name=c2 value="20">

<param name=c2_style value="solid">

<param name=c3 value="85">

<param name=c3_style value="striped">

<param name=c3_color value="magenta">
<param name=c3_label value="Q3">

<param name=c4 value="30">

<param name=c4_color value="darkGray">
<param name=c4_label value="Q4">

<param name=c4_style value="solid">

<center>

</center>

</applet></td>

<td width="50%">

<center>

<table width="208" border="1" cellpadding="0" cellspacing="0">
<tr>

<th width="94" bgcolor="#800000"> DATO</th>
<th width="104" bgcolor="#800000"> CANTIDAD</th>
</tr>

<tr>

<td width="94" align="center">Q1</td>
<td width="104" aligh="center">100</td>
</tr>

<tr>

<td width="94" align="center">Q2</td>
<td width="104" aligh="center">20</td>
</tr>

<tr>

<td width="94" align="center">Q3</td>
<td width="104" align="center">85</td>
</tr>

<tr>

<td width="94" align="center">Q4</td>
<td width="104" align="center">30</td>
</tr>

</table>

</center>

</div>

</table>

</center>

</body>

</html>

GRAFICAS DE BARRAS UTILIZANDO SERVLETS DE JAVA PARA LA GENERACION DEL
CODIGO HTML.

En el siguiente serviet EjemploGuial2.java se llenan 2 vectores, cuyos valores son mostrados
en una tabla en el navegador, si observas cuando se declara el applet en el servliet debemos
decir donde se encuentra la clase Barchar2, en este caso se asume que el applet se encuentra
en el directorio virtual “Ejemplo” (vea la linea en negrita en el cédigo siguiente.)

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class EjemploGuial2 extends HttpServlet {
public void service(HttpServletRequest request,
HttpServletResponse response)

Aplicaciones Cliente Servidor Pagina 123.

Tec. En Ingenieria en Sistemas

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

String Sucursales[] = {"SANTA ANA","SANTA TECLA","SAN SALVADOR","SAN MIGUEL"};
int CantidadVenta[] = {250,500,585,175};

out.printin("<HTML>\n" +

"<HEAD><TITLE> >Ejercicio de Programacion IV GUIA #12</TITLE></HEAD>\n" +
"<BODY>\n" +

"<CENTER><H1>Almacen \"El Baratio\"</H1></CENTER>\n"+
"<CENTER><H3>Cantidad de Bibicletas vendidas en el Afio 2001 Por
Sucursales</H3></CENTER><hr>\n"+

"<center><table width=50% border=1 cellspacing=0 cellpadding=0>\n"+

"<tr bgcolor=blue><th>SUCURSAL</th><th>CANTIDAD</th>\n");

for (int i=0; i< Sucursales.length; i++)

{

out.printIn("<tr><td> "+Sucursales[i]+

"<td>"+CantidadVenta[i]);

out.printin("</table></center><p>");

int totalbarras = Sucursales.length;

out.printin("<center>");

out.printin("<applet codebase=\"/ejemplos\" code=\"Barchart2.class\" width=450
height=310>");

out.printIn("<param name=title value=\"Ventas realizadas durante el afo 2001\">");
out.printin("<param name=columns value=\""+totalbarras+"\">");
out.printin("<param name=orientation value=\"vertical\">");
out.printIn("<param name=printval value=\"no\"> ");

out.printin("<param name=bgcolor value=\"dddddd\">");
out.printIn("<param name=insetcolor value=\"ffc0a0\">");

for (int i=0; i< Sucursales.length; i++)

{

int cont=i+1;

out.printin("<param name=c"+cont+"_label value=\""+Sucursales[i]+"\">");
out.printin("<param name=c"+cont+" value=\""+CantidadVenta[i]+"\">");
out.printin("<param name=c"+cont+"_style value=\"striped\">");
out.printIn("<param name=c"+cont+"_color value=\"red\">");

b

out.printin("</applet>");

out.printIn("</center>");

out.printin("</BODY></HTML>");

b

b

Aplicaciones Cliente Servidor Pagina 124.

Tec. En Ingenieria en Sistemas

EJERCICIOS

1. Crear una Pagina HTML que muestre la siguiente tabla de resultados, con su grafica
respectiva:

SEGUNDO TRIMESTRE DEL ANO 2002

PRODUCTO VENTAS REALIZADAS (EN §)
IMPRESCRA CANNON BJC1000 3,000
DISCOS DURCS (QUANTUM] 5.000
MEMORIA RAM 2,500
UNIDAD DE CD ROM 3,600
MODEM INTERNO 1,200

2. Crear un servlet de java, que muestre el contenido de 2 vectores, en los cuales se encuentran
almacenados el nimero de alumnos inscritos por afio desde 1995 hasta el 2002 en el ITCA.
Ademas de mostrar la tabla de resultados hacer un link para mostrar el grafico en la misma
pagina.

3. Utilizando la base de datos Neptuno, (cuya conexion ODBC debera llamarse también Neptuno)
Crear un servlet de java, que muestre Cada una de las Categorias de productos que existen en
la base de datos con el nimero total de productos que pertenecen a cada categoria. El servlet
debera mostrar la tabla de resultado y el grafico generado a través de applet

Aplicaciones Cliente Servidor Pagina 125.

Tec. En Ingenieria en Sistemas

Escuela Especializada

en Ingenieria

I'TCA wzFerane

Bibliografia

&
A<

Libros

e Como Programar en JAVA (Deitel y Deitel)Prentice Hall
e Piensa en JAVA-22 Edicion (Bruce Eckel)Prentice Hall

e Java Servlet Programming Bible (Suresh Rajagopalan, Ramesh Rajamani, Ramesh

Krishnaswany and Sridhar Vijendran) Hungry Minds

Sitos Web

WWW.programacion.com/java/cursos.htm
www.verextremadura.com/miguel/jsp/JavaServerPages.pdf
http://dalila.sip.ucm.es/miembros/olga/javas.html

http://www.aulambra.com/javascript.asp
http://www.programacion.com/html/dinamico/tutorial/indice.htm

Aplicaciones Cliente Servidor

Pégina 126.

Primera Edicion
Manual de
Aplicaciones Cliente Servidor

ITCA - FEPADE © 2010

