

DEPARTAMENTO DE INGENIERIA EN COMPUTACIÓN
TÉCNICO EN INGENIERIA DE SISTEMAS INFORMÁTICOS

PRIMERA EDICIÓN
SANTA TECLA, JUNIO DEL 2010

DOCENTE :___________________________________

INSTRUCTOR :___________________________________

ALUMN@ :___________________________________

SECCIÓN :___________________________________

CICLO :___________________________________

1. C

C

2. A

3. C
e

4. P
s

5. P
e

6. I

7. S
m

8. S

9. S

10. E

11. S

12. N

13. S

14. N

15. N

16. N

17. S

18. R

19. A
e

20. E

21. E
r

Cada estudian
Centro de Cóm

Antes de inici

Comunicar in
equipo.

Presentarse p
su diskette de

Portar su ca
estudiante ac

ngresar al Ce

Se prohíbe
modificacione

Se prohíbe ac

Se prohíbe fu

Evitar el uso d

Se prohíbe re

No se permite

Se prohíbe ing

No botar o es

No manipular

No se permite

Se prohíbe m

Retirarse de l

Antes de reti
equipo quede

El instructor n

El incumplimie
retribución m

Reglam

nte es respo
mputo.

ar su práctica

mediatament

puntualmente
e trabajo.

rné de iden
tivo del ITCA

entro de cóm

totalmente
es en la config

cceder al Inte

mar y/o ingre

de aparatos d

producir CD´

en los juegos

gresar partes

parcir basura

 los controles

e levantarse i

aquillarse o p

a práctica en

rarse del Ce
 apagado.

no se hará re

ento de las re
onetaria segú

mento de

nsable del u

a verifique qu

te al docente

e al Centro d

ntificación, ta
A.

puto únicam

la instalació
guración del

ernet durante

esar alimento

de sonido, ce

´s de música

 de computad

s o accesorios

a.

s del aire aco

innecesariam

peinarse dent

n el momento

ntro de Cóm

sponsable de

eglas anterio
ún el daño ca

el Centro

so adecuado

ue su equipo

e o instructor

e Cómputo c

alonario u o

ente cuando

ón o desins
equipo.

e la hora de p

os o bebidas

elulares y bee

 en el Centro

doras, ver po

s de computa

ondicionado.

mente durante

tro del Centro

o que el instru

mputo, revise

e objetos olvi

ores conllevar
ausado.

 de Comp

 del mobiliar

 esté complet

r sobre posib

con su respec

otro docume

 su instructor

stalación de

práctica.

 en el Centro

epers durante

 de Cómputo

ornografía ni

adoras.

e la práctica

o de Cómput

uctor le indiq

 su área de

dados en el C

rá a la suspen

puto

rio y equipo

to y en buen

bles fallas en

ctivo manual

nto que lo

r esté presen

e software,

 de Cómputo

e la práctica.

o.

usar salas de

o.

ue.

 trabajo, ver

Centro de Có

nsión tempor

instalado en

 estado.

 el mobiliario

l de prácticas

acredite com

te.

así como

.

e chat.

rificando que

mputo.

ral o la

 el

o y

s y

mo

las

 el

Aplicac

Clase
Guía P
y Aplic
Clase
cliente
Guía P
Clase
Guía P
Clase
Guía P
Clase
Guía P
Clase
Guía P
Clase
Guía P
Clase
Guía P
Clase
Guía P
Clase
Guía
Excep
Clase
Guía P

iones Cliente S

 Nº 1 Conc
Práctica Nº
caciones bá
 Nº 2 Eleme
e/servidor
Práctica Nº
 Nº 3 Clases
Práctica Nº
 Nº 4 Introd
Práctica Nº 4
 Nº 5 Desarr
Práctica Nº
 Nº 6 Introd
Práctica Nº
 Nº 7 JSP co
Práctica Nº
 Nº 8 Manej
Práctica Nº 8
 Nº 9 Introd
Práctica Nº 9
 Nº 10 Acce
Práctica N

pciones)
 Nº 11 Utilid
Práctica N°

Servidor

eptos Gener
1 Instalaci

ásicas con Ja
entos básico

2 Estructur
s, Atributos
3 Clases, A

ducción a la
4 Esquema
rollo de Inte
5 Desarroll

ducción a la
6 Introducc

on bases de
7 JSP con B
o de sesione
8 Manejo d

ducción a Se
9 Servlets B

eso a Base d
Nº 10 Bas

dades para p
11 Gráficos

Co

Conteni
rales Aplica
ión del IDE
ava.

os de lengua

ras de contr
s , Métodos y
Atributos , M
 interfaz Gra
 de una apli
erfaces.
lo de Interfa
 Tecnología
ción a Java
 datos
Bases de Da
es y cookies

de sesiones y
ervlets
Básico

de Datos con
es de Dat

programar e
 en Aplicaci

ontenido

ido
ciones Clien
(Entorno de

ajes de prog

rol de JAVA:
y Manejo de

Métodos y Ma
afica y Mode
icación orie

aces.
 JSP
 Server Page

atos
s con JSP
y cookies co

n Java Servl
tos con Ja

en JAVA Ser
ones de Jav

T

nte–Servido
e Desarrollo

gramación e

 if, swich, fo
e Excepcione
anejo de Ex
elo de Event
ntada a eve

es

on JSP

lets
ava Servlet

rvlets
va

Tec. En Ingeni

or.
o Integrado)

en ambiente

or, while.
es.

xcepciones.
tos

entos

ts (Uso de

ería en Sistem

Página

Pagina
5

)
9

e 16

22
26
35
38
41
44
47
49
55
61
66
72
80
85

 94
103

e
108

115
121

mas

3.

Aplicac

EVALU

EVALU

EVALU

TOTAL

EVALU

EVALU

EVALU

 PROY

TOTAL

iones Cliente S

DEPAR

ACTIVIDA

UACIÓN TEOR

UACIÓN TEOR

UACIÓN TEOR

AL TEORIA (40

UACIÓN PRAC

UACIÓN PRAC

UACIÓN PRAC

YECTO

AL PRACTICA (

Servidor

 Ap

RTAMENT

AD

RICA 1

RICA 2

RICA FINAL

%)

TICA 1

TICA 2

TICA 3

(60%)

Sistema
licacione

TO DE IN

PONDERACIÓ

30%

35%

35%

100%

15%

15%

20%

50%

100%

 de Evalu

es Cliente

NGENIERI

ÓN FE

Sem

Sem

Sema

Sem

Sem

Sems

Sema

T

uación
e Servido

IA EN CO

CHA

mana 4

ana 8

ana 14

mana 4

ana 8

sna 14

ana 16

Tec. En Ingeni

r

OMPUTAC

CONT

Unid

Unid

Unia

Unid

Unid

Unid

Proy

ería en Sistem

Página

ION

TENIDO

dad 1

dad 2

adad 3

dad 1

dad 2

dad 3

yecto

mas

4.

Aplicac

OBJET

Al final

• • •

DESAR

CLIE

Model
depen
inicia

En ge
cliente
red. C
envía
proces
mostr
cliente
espec

Servid
servid
resulta
esto y

iones Cliente S

TIVOS

lizar la clase,
Definir conc
Exponer ve
Identificar d

RROLLO

NTE SERV

o Cliente –
ndiendo de
(cliente).

eneral, una
e. Los usua
Cada vez qu
 una solicit
so cliente e
rar los result
es son mas
iales del sis

dor es un pr
dor recibe l
ados al clien

ya se encarg

Servidor

 Conce

el estudiante
ceptos de apl
ntajas y desv
diferentes tec

VIDOR.

– servidor:
si la aplica

aplicación
rios finales
ue se ejecut
tud de serv
es el encarg
tados de las
 fáciles de d
tema para p

rograma qu
la petición
nte. No exis
ga la aplicac

Cla
eptos Ge

Client

e será capaz d
licaciones clie
ventajas de a
cnologías de

divide las
ación se qu

que inicia u
invocan ap
ta una aplic
vicio y espe
gado de lle
s peticiones
diseñar que
poder funcio

ue espera pe
del cliente

ste una inter
ción cliente.

ase Nº 1
enerales A
te–Servid

de:
ente servidor
aplicaciones c
Java como le

aplicacione
eda en esp

una comuni
licaciones c
cación client
era la resp
var a cabo

s de servicio
 los servido
onar.

eticiones de
e, ejecuta e
racción dire

T

Aplicacio
dor.

r.
clientes servid
enguaje de ap

s comunica
pera de con

icación con
liente cuand
te, esta con

puesta o re
 la interacc

o. En la may
ores, y no s

e servicio po
el servicio
cta entre el

Tec. En Ingeni

ones

dor.
plicaciones cl

antes en do
nexiones (se

 otra se la
do utilizan u
ntacta con e
sultados de
ción con el
yoría de las
uelen precis

or parte de
solicitado y
 usuario y e

ería en Sistem

Página

liente servido

os categoría
ervidor) o l

 califica com
un servicio
el servidor,
el servicio.
 usuario y
 ocasiones l
sar privilegi

 un cliente.
y retorna l
el servidor,

mas

5.

or.

as,
las

mo
de
 le
El
de
los
ios

 El
los
de

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 6.

Las aplicaciones emplean el modelo cliente-servidor donde las funciones como, los
inicios de sesión y el almacenamiento de datos pueden residir en sistemas diferentes.

Características de un cliente • Es quien inicia solicitudes o peticiones, tienen por tanto un papel activo en la

comunicación (dispositivo maestro o amo). • Espera y recibe las respuestas del servidor. • Por lo general, puede conectase a varios servidores a la vez. • Normalmente interactúa directamente con los usuarios finales mediante una
interfaz gráfica de usuario(GUI).

Características de un servidor • Al iniciarse esperan a que lleguen las solicitudes de los clientes, desempeñan

entonces un papel pasivo en la comunicación (dispositivo esclavo). • Tras la recepción de una solicitud, la procesan y luego envían la respuesta al
cliente. • Por lo general, aceptan conexiones desde un gran número de clientes (en
ciertos casos el número máximo de peticiones puede estar limitado). • No es frecuente que interactúen directamente con los usuarios finales.

 Ventajas

Centralización del control: Los accesos, recursos y la integridad de los datos son
controlados por el servidor de forma que un programa cliente defectuoso o no
autorizado no pueda dañar el sistema. Esta centralización también facilita la tarea de
poner al día datos u otros recursos.

Escalabilidad: Se puede aumentar la capacidad de clientes y servidores por separado.
Cualquier elemento puede ser aumentado (o mejorado) en cualquier momento, o se
pueden añadir nuevos nodos a la red (clientes y/o servidores).

Fácil mantenimiento: Al estar distribuidas las funciones y responsabilidades entre
varios ordenadores independientes, es posible reemplazar, reparar, actualizar, o
incluso trasladar un servidor, mientras que sus clientes no se verán afectados por ese
cambio (o se afectarán mínimamente). Esta independencia de los cambios también se
conoce como encapsulación.

Desventajas

Congestión del tráfico: cuando una gran cantidad de clientes envían peticiones
simultaneas al mismo servidor, puede ser que cause muchos problemas para éste (a
mayor número de clientes, más problemas para el servidor).

Centralización de recursos: cuando un servidor está fuera de línea, apagado o ha
tenido algún problema para el inicio, las peticiones de los clientes no pueden ser
satisfechas.

El software y el hardware: son generalmente muy determinantes. Un hardware
regular de un ordenador personal puede no poder servir a cierta cantidad de clientes.
Normalmente se necesita software y hardware específico, sobre todo en el lado del
servidor, para satisfacer el trabajo. Por supuesto, esto aumentará el coste.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 7.

¿Qué es JAVA?
Java es un lenguaje de programación de Alto nivel independiente de la plataforma. Que
se desarrolla en principios para la creación de aplicaciones que sean independientes del
hardware en que se ejecuta y que poseen pocos recursos. Java elimina todas aquellas
instrucciones y funciones imprescindibles que en muchas ocasiones son causantes de
errores logrando mantener todas las características de un lenguaje de alto nivel.
En 1995 es lanzado como una novedad para la creación de aplicaciones pero no se
queda como un lenguaje para la creación de aplicaciones de escritorio, gracias al auge
del Internet se descubre otra característica que marco el rumbo del posicionamiento de
java como un lenguaje para la creación de contenidos para la Web y es así que para
1996 a través de Netscape 2.0, y la Web ya no volvió a ser lo mismo.
Uno de los mensajes comerciales de Java fue “Escribir una vez, funcionar en cualquier
lugar”. En teoría el programa solo debe codificarse una vez, y debe funcionar en
cualquier maquina con soporte Java para Windows y Unix, mientras que Apple controla
la versión Macintosh. Originalmente.

Máquina Virtual de Java
Uno de los acrónimos más empleados en Java es JVM, que procede del término en
inglés Java Virtual Machine (Máquina Virtual Java). Entender que tiene Java de
especial los programas Java no hablan directamente a la computadora, sino que lo
hacen a la JVM, que a su vez se encarga de comunicarse con aquélla. La JVM es como
un traductor entre el código Java y la computadora, la razón por la cual dicho código
es considerado como un código interpretado en lugar compilado(es decir específico de
una máquina). La JVM es un programa específico que se ejecuta en la computadora.
Su único propósito es tomar programas Java y convencer a la computadora de que lo
que esta ejecutando es algo que se a desarrollado específicamente para ella.

En conclusión Java puede ejecutarse en cualquier hardware, razón por la cual existe
una Máquina Virtual Java, o JVM funcionando en el.

Aplicación
Java

Máquina
Virtual
UNIX

Máquina
Virtual

Macintosh

Máquina
Virtual

Windows

PC

Mac

UNIX

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 8.

Características de Java • Java es simple. • Destaca por su robustez. • Es interpretado. • Java es distribuido. • Ante todo es portable. • Con una arquitectura independiente (neutral). • Un lenguaje orientado a objetos. • Además, es dinámico. • Su seguridad es muy alta. • Permite actividades simultáneas.

Tecnologías aplicadas de Java:
J2SE (Java 2 Standard Edition): Es una colección de Applets del lenguaje de
programación Java útiles para muchos programas de la Plataforma Java. La Plataforma
Java 2, Enterprise Edition incluye todas las clases en el Java SE, además de algunas de
las cuales son útiles para programas que se ejecutan en servidores sobre Estaciones
de Trabajo.

J2ME (Java 2 Micro Edition): Es una colección de Applets de Java para el desarrollo de
software para dispositivos de recursos limitados, como PDA, teléfonos móviles y otros
aparatos de consumo.

J2EE (Java 2 Enterprise Edition): Es una plataforma de programación para desarrollar
y ejecutar software de aplicaciones en Java con arquitectura de N niveles distribuidos,
basándose ampliamente en componentes de software modulares ejecutándose sobre
un servidor de aplicaciones.

Tarea:
(Investigar y hacer un resumen con todas las características de java.
(Hacer un cuadro comparativo con las tecnologías aplicadas de java.

Aplicac

OBJET

Al final

PROC

Un
es
es
int
Pa
pu

El
pa
ser
gra

 Pa

An
De

Pa

Ap
ins
con

iones Cliente S

Instalac

TIVOS

lizar la práctic
• Inst• Util

apli• Cre

EDIMIENTO

n entorno de
 un entorno d
 decir, consis
terfaz gráfica
ra el desarro
ede trabajar

NetBeans ID
ra escribir, c
rvir para cua
atuito sin res

asos para

tes de inst
evelopmnet K

ra instalarlo d

parecerá la p
stalador com
ntinuación.

Servidor

ción del I
Apli

ca, el estudian
talar y config
izar los com
icaciones en J
ar programa

 desarrollo in
de programa
ste en un edi
 GUI (Interfa
ollo de nues
 Java de una

E es un ento
compilar, de
lquier otro le
tricciones de

 la instala

alar el Net
Kit).

daremos dob

pantalla de
mo la que

Guía P
DE (Ento
caciones

nte será capa
gurar el entor
ponentes bá
Java.
s básicos con

ntegrado o en
ción que ha
itor de códig

az Gráfica de
stras aplicacio
 forma muy s

orno de desar
purar y ejec

enguaje de pr
 uso.

ación del N

Beans neces

ble clic en el i

bienvenida
se muestra

Práctica N
orno de D
s básicas

az de:
rno de desarr
sicos del ID

n Java.

n inglés Inte
sido empaqu
o, un compil
Usuario) e in
ones usarem
sencilla.

rrollo, una he
utar program
rogramación.

NetBeans

sitamos tene

cono siguient

del
 a

T

No 1
Desarrollo
 con Java

rollo de aplica
E de program

grated Deve
uetado como
ador, un dep

nterprete.
mos el NETBA

erramienta pa
mas. Está es
. El IDE NetB

er instalado

te

Tec. En Ingeni

o Integra
a.

aciones en Ja
mación para

lopment Env
 un programa
purador y un

ANS un IDE

ara programa
scrito en Jav
Beans es un p

 el JSDK (

ería en Sistem

Página

ado) y

ava.
 la creación

ironment (ID
a de aplicació
 constructor

 con el que

adores pensa
va, pero pue
producto libre

(Java Softwa

mas

9.

de

DE)
ón,
de

se

ada
ede
e y

are

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 10.

Después de un instante de espera aparecerá
una ventana con la licencia la cual debemos
aceptar dando clic en Accept.

Después de aceptar la licencia aparecerá otra
ventana que indica los componentes que se
instalarán y la dirección donde lo hará,
solamente presionaremos Next (Si lo desea
puede cambiar la dirección dando clic en
Change).

Al instante aparecerá una ventana
que indica el estado de la
instalación, esperaremos unos
instantes para que termine de
instalar todos los componentes.

Luego solo nos resta dar clic en Finish
como lo muestra en la imagen.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 11.

Ahora que ya instalamos el JSDK podemos instalar el NetBeans para ello haremos lo
siguiente:

De doble clic en el instalador del NetBeans

Aparecerá una ventana indicando que se
esta Configurando el Instalador como la
siguiente:

La ventana siguiente es la pantalla principal
del instalador donde se muestra la versión que
estamos instalando del NetBeans y las
tecnologías que podemos trabajar con el en
esta pantalla debemos dar clic en Next.

Aparecerá la licencia del NetBeans la cual
debemos aceptar dando clic en I accept the
terms… y se activa el botón Next.

Luego nos mostrará la ruta donde se instalará
el NetBeans dejaremos las direcciones que se
muestran en la pantalla y demos clic en Next,
(Si lo desea puede cambiar la ruta de
instalación)

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 12.

En ocasiones aparecerá una alerta de
seguridad la que preguntará si deseamos
bloquear Java[TM] Platform SE binary para no
tener problemas posteriores daremos clic en
Desbloquear.

A continuación nos pedirá la configuración de los
parámetros del servidor Web simplemente
dejaremos las opciones tal como están y
presionamos Next.

Luego nos mostrara la siguiente pantalla
donde daremos clic en Install

Aparecerá una ventana que nos muestra el
estado de la instalación y debemos esperar ya
que esto tomara un par de minutos.

Durante la instalación podría aparecer otra
Alerta de seguridad simplemente has clic
en Desbloquear si esto sucede. Al final
 daremos clic en Finish.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 13.

Terminada la instalación ya estamos preparados para utilizar el NetBeans al ejecutar la
aplicación que se encuentra en inicio > todos los programas >NetBeans>NetBeans
IDE 6.1 nos aparece esta pantalla que es la ventana principal del IDE.
 Descrpcion de la ventana del IDE.

1. Barra de Menú.
2. Barra de Herramientas
3. Área de Trabajo (codificación y diseño).
4. Navegador de proyectos.
5. Navegador de Elementos de la Clase.
6. Salidas o resultados.

Para la creación de aplicaciones con el IDE lo primero que crearemos será un proyecto el cual
nos servirá para almacenar todas las clases y elementos que creemos para nuestra aplicaron en
Java. Esto lo hacemos desde File>New Project…. o damos clic en el icono en la barra de
herramientas. Lo que haremos al hacer cualquiera de estas acciones será seleccionar el tipo de
proyecto (en nuestro caso será Categories:Java; projects:Java Application) definiremos el nombre y la
ubicación del proyecto. Hecho esto ya podemos empezar a crear las clases que serán la base de
nuestros programas.

Para Crear una clase lo haremos desde File>New File…. O en el icono de la barra de menú al
igual que el proyecto seleccionamos el tipo de archivo (en nuestro caso será Categories:Java; File
Types:Java Class) y definimos el nombre. Terminado este proceso en el área de trabajo aparecerá
una plantilla de una clase la cual solo nos queda definir los códigos necesarios para su
funcionamiento.

Primer programa en Java.

Crearemos una clase denominada HolaMundo con la cual se muestra un mensaje en pantalla, el
código de la clase será el siguiente.

1
2 3

4

5

6

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 14.

HolaMundo
public class HolaMundo {
public static void main(String[]args){
 System.out.print("Hola Mundo");
}
}

Lo único que mostrara este programa es el mensaje “Hola Mundo”. Pero para hacer esto primero
hay que compilar y después ejecutar la clase como se hace esto lo podemos hacer de dos
maneras ya sea por medio de la barra de menú o con un metodomas facil que es por atajos del
teclado.

Proceso Barra de Menú Atajo de Teclado
Compilar Build> Compile “nombre de la clase.java” F9
Ejecutar Run > Run File > Run “nombre de la clase.java” Mayus+F6

Variables.
public class Variables {

public static void main(String[]args){
 int dato1 = 10;
 double dato2 = 15.31213;
 float dato3 =1.2F;
 char dato4 = 'c';
 boolean dato5 = true;
 String dato6 = "Desarrollo de aplicaciones";
 short dato7=24;
 long dato8 = 45441557864L;

 System.out.println("Tipo de dato int valor: "+dato1);
 System.out.println("Tipo de dato double valor: "+dato2);
 System.out.println("Tipo de dato float valor: "+dato3);
 System.out.println("Tipo de dato char valor: "+dato4);
 System.out.println("Tipo de dato boolean valor: "+dato5);
 System.out.println("Tipo de dato String valor: "+dato6);
 System.out.println("Tipo de dato short valor: "+dato7);
 System.out.println("Tipo de dato long valor: "+dato8);
}
}

Variables2
public class Variables2 {
public static void main(String[]args){
 int dato1 = 10;
 int dato2 = 15;
 String msg="La Suma es: ";
 System.out.println(msg+(dato1+dato2));
}
}

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 15.

Operaciones

public class Operaciones {
 public static void main(String[]args){
 int a=10,b=3;
 System.out.println("la suma de a + b = "+(a+b));// 13
 System.out.println("la resta de a - b = "+(a-b));// 7
 System.out.println("la multiplicacion de a * b = "+(a*b));// 30
 System.out.println("la division de a / b = "+(a/b)); // 3
 System.out.println("el modulo de a % b = "+(a%b)); // 1
 System.out.println(" de a > b = "+(a>b));// true
 System.out.println(" de a < b = "+(a<b));// false
 System.out.println(" de a == b = "+(a==b));// false
 System.out.println(" de a != b = "+(a!=b));// true
 System.out.println(" de (a > b) && (a<b) = "+((a>b)&& (a<b)));// false
 System.out.println(" de (a > b) || (a<b) = "+((a>b)|| (a<b))); // true
 System.out.println(" de (a > b) && !(a<b) = "+((a>b)|| !(a<b))); // true
 System.out.println(" de a++ = "+ a++ +" a = "+a); // 11
 System.out.println(" de ++b = "+ ++b); // 4
 }

}

Ejercicios. • Crear una clase que imprima la suma de 2 números decimales. • Crear una clase que calcule el área de un rectángulo. • Crear una clase que calcule la hipotenusa de un triangulo (investigue las funciones para

sacar raíz cuadradas y potencias).

Sea creativo para presentar los resultados, utilicé todas las variables y operadores que considere
necesarios.

Aplicac

OBJET

Al final

DESAR

Para to
que ha
estánd
para l
tratam
 • • • • • •

COME
Nos pe
acción
docum
modific
El leng
 • • •

 Ejemp
import j

/** Un
 * Imp
 * @au
 * @ve
 */
public c

/** Inic
 * @pa
 * @re
 * @th
 */
public s
 Syste
 Syste

iones Cliente S

de p

TIVOS

lizar la clase,
• Identif

servido• Definir

RROLLO

odos los que
ay elemento

dares nos per
a programac

miento que Jav

Comentario
Identificado
Palabras re
Variables
Literales
Operadores

ENTARIOS
ermiten intro
 que se rea

mentación inte
cación y estu
guaje nos per

Comentario
Comentario
Comentario

plo
java.util.*;

 programa Java
rime un mensa

uthor ITCA
ersion 1

class EjemploC

cio de la docum
aram args Arra
eturn No devue
rows No dispa

static void main
em.out.println
em.out.println

Servidor

Elem
programa

el estudiante
ficar elemento
or.
r el uso de ca

los que ya he
os básicos, p
rmiten tener
ción. En est
va hace parti

os
ores
servadas

s

S.
ducir notas y
alizan en cie
erna de las

udio futuro de
rmite tres tipo

os de una sola
os de bloque
os de Docume

a simple.
aje y la fecha.

omentarios {

mentacion
ay de Strings.
elve ningun val
ra ninguna exc

n(String [] arg
("Hola a todos
(new Date());

Cla
mentos bá
ación en a

e será capaz d
os básicos de

da elemento

emos trabaja
para poder t
 un mayor co
te apartado
icularmente a

y aclaracione
ertas partes
aplicaciones

e las aplicacio
os de coment

a línea //
 /* */
entación /**

or.
cepción.

gs) {
");

ase Nº 2
ásicos de
ambiente

de:
e lenguaje Jav

 y su aplicaci

ado con un le
trabajar con
ontrol y orde
conoceremo

a estos, dicho

s en el mom
 del código,
 creadas en
ones.
tarios los cua

 */

T

e lenguaje
e cliente/

va para la p

ón en los pro

enguaje de pr
 dicho lengu
en a al hora
s y estudiar
os elementos

mento de prog
, esto se ha
 Java, adem

ales son:

Tec. En Ingeni

es
/servidor

programación

ogramas crea

rogramación
uaje y estos
de utilizar e

remos estos
s son:

gramar para
ace para co
más es una

ería en Sistem

Página 1

r.

n cliente

ado con Java.

debemos sab
s se apagan
stos element
 electos y

resaltar algu
mplementar
ayuda para

mas

16.

.

ber
 a
tos
 el

una
 la
 la

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 17.

}

}

Además de los comentarios de documentación encontramos algunas palabras o tags que sirven
para definir una mejor documentación

Tipo de
tag

Formato Descripción

Todos @see Permite crear una referencia a la documentación de otra clase o
método.

Clases @version Comentario con datos indicativos del número de versión.
Clases @author Nombre del autor.
Clases @since Fecha desde la que está presente la clase.
Métodos @param Parámetros que recibe el método.
Métodos @return Significado del dato devuelto por el método
Métodos @throws Comentario sobre las excepciones que lanza.
Métodos @deprecated Indicación de que el método es obsoleto.

IDENTIFICADORES
Son elementos que nos permiten nombrar variables, funciones, clases y objetos; cualquier cosa
que el programador necesite identificar o usar en una aplicación en Java. Se definen como los
nombres dados a cada elemento que utilicemos dentro de la aplicación.
Estos se deben formar siguiendo algunas reglas las cuales son:

1- Comienzan con una letra (mayúscula o minúscula), un guión bajo (_) o un símbolo de
dólar ($).

2- Los caracteres siguientes pueden ser letras o dígitos
3- No se deben dejar espacios en blanco
4- No existe una longitud máxima de caracteres.

Serían identificadores válidos:

 identificador
 nombre_usuario
 Nombre_apellido
 _variable_del_sistema
 $transaccion

y su uso sería, por ejemplo:

 int contador_principal;
 char _lista_de_ficheros;
 float $cantidad_en_dolares;

PALABRAS RESERVADAS
Son aquellas que tienen un uso especial dentro del lenguaje e identifican elementos que son
generales del lenguaje y no pueden ser utilizadas como identificadores para los objetos,
variables y otros objetos que nosotros creemos Estas palabras son:

abstract , boolean, break, byte, bytevalue, case, catch, char, class, const, continue,
default, do,double, else, extends, false, final, finally, float, for, goto, if, implements,
import, instanceof, int, interface, long, native, new, null, package, private, potected,
public, return, short, static, super, switch, synchronized, this, threadsafe, throw,
transient, true, try, void, while.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 18.

VARIABLES

Son elementos imprescindibles dentro de la programación y las podemos definir como posiciones
de memoria, que almacenan un dato. Para utilizar una variable esta debe primero haberse
declarado tomando en cuenta ciertos estándares los cuales define que la debe de poseer un tipo
de dato, el identificador de dicha variable y el valor que ha de almacenar, solo que este ultimo
es opcional a la hora de declarar la variable pero si es importante que se defina cuando se va a
procesar. Ejemplos

int x=10;
double pago_dolares;
boolean valorReal = false;
String Nombre=”Juan Perez”;

Revisemos la estructura de la declaración de las variables y vemos lo siguiente

Tipos de datos: int, double, boolean, String.
Identificador: x, pago_dolares, valorReal, Nombre.
Valores: 10, false, Juan Perez.

Tipos de Variables.
Además de crear variables debemos conocer su ámbito o alcance de dicho elemento lo cual nos
permitirá saber en que partes de nuestros programas puede ser utilizada dicha variable. Entre
estas se pueden mencionar las más importantes.

Variables Locales: estas variables solo se pueden usar dentro de bloques de códigos de los
programas y cualquier intento de alguna instrucción fuera de este no tendrá acceso a los valores
que almacena dicha variable.

Variables globales: este tipo permite el acceso a sus valores desde cualquier lugar dentro del
código pero en Java no existen así que se sustituyen con variables de instancia y variables de
clase las cuales son las que nos permitirán compartir información entre los objetos.

Variables de clase: estas poseen valores similares para la clase y para todas sus instancias. Para
indicar que una variable es una variable de clase se utiliza la palabra clave static en la
declaración de la variable.

Variable de instancia: es una variable que está relacionada con una sola instancia de una clase.
Cada vez que una instancia de una clase se crea, el sistema crea una copia de la instancia
variables relacionadas con esa categoría.

public class suma {
 static int y=50; // variable de clase
 static int sumar(){
 int z=4; //variable local y de instancia
 return(z+y);
 }
 public static void main(String[]args){
 System.out.print(sumar());
 }
}

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 19.

TIPOS DE DATOS

Otro elemento importante dentro del lenguaje Java son los tipos de datos estos nos permiten
poder operar y realizar acciones en conjunto con variables como se menciona antes las variables
tienen que tener un valor asignado y este valor debe ser de un tipo especifico.
En Java encontraremos 8 tipos básicos de de datos los cuales se describen a continuación.

Tipo de Dato Tamaño Valor mínimo Valor máximo
byte 8 bits -128 127
short 16 bits -32768 32767
Int 32 bits –2147483648 2147483647
long 64 bits –9223372036854775808 9223372036854775807
float 32 bits ±1.40239846e-45 ±3.40282347e+8
double 64 bits ±494,065645841246544e

-324
±1.79769313486231570e
+308

char 16 bits \u0000 \uffff
boolean n/a true / false true / false

Además encontraremos un tipo de dato que no es básico ya que una librería de java que lo
implementa dicho tipo es el String y este se usa para trabajar cadenas de caracteres.

LITERALES.
Son identificadores que se definen en Java para indicarle al compilador el tipo de dato que
tendrá el valor que se ha asignado a una variable y esto se usa para que dicho valor no cambie
durante la ejecución del programa. Para definir los literales se usan ciertos caracteres que le
dirán al compilador que maneje el dato como una constante.

Literales tipo Ejemplo
True y False booleano x = true , y = false
24, 150 Entero Edad = 24,HorasP =

150
2L, 34L Entero largo Conteo = 2L, CP=45L
2.3, 1.5E3 double Desc = 2.3, cap =

1.5E5
23.5f, 10.75f float Temp = 23.5f, pi =

3.14f
‘a’, ‘B’,’\c’ char Dia = ‘L’, Esc =’K’
“Juan Perez” String Nombre = “Juan

Perez”

Además existen ciertos caracteres que poseen una función especial en Java las cuales
formatean la salida de una impresión. Veamos cuales son en la siguiente tabla.

Caracteres Significado
\b Backspace o

retroceso
\ddd Representación

Octal.
\f Formfeed o

Avance de hoja
\n Nueva línea
\r Retorno de

carro
\t Tabulación
\udddd Carácter

unicode

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 20.

\xdd Representación
Hexadecimal

\\ Backslash
\’ Comilla Simple
\” Comilla doble

OPERADORES.

Estos son elementos imprescindibles de las expresiones u operaciones que se deben realizar en
una aplicaron ya que el calcular cuanto es la suma de dos valores, saber si un número es mayor
que otro y unir dos o más cadenas de caracteres son acciones que se repiten en todo programa
y por eso es necesario contar con los operadores. Estos de agrupan en diversas categorías entre
las cuales son: • Operadores aritméticos • Operadores booleanos. • Operadores lógicos. • Operadores con objetos. • Operadores de cadena. • Operadores de gestión de memoria.

Operadores aritméticos:
Se usan para calcular operaciones aritméticas sobre valores numéricos estas operaciones
pueden ser entre uno o mas valores ejemplo.

Operador Accion Ejemplo
+ Suma 4 + 5=9
- Resta o cambio

de valor a
negativo

5 - 1=6, -4

* Multiplicación 5 * 2=10
/ División 5 / 2=2.5
% Modulo 5 % 2=1
++ Amento de valor 5++ = 6
-- Disminución de

valor
5-- = 4

Operadores Booleanos, de comparación o Relacionales.
Se usan para devolver valores de verdad en la comparación de dos datos

Operador Accion Ejemplo
== Igual 5==5 = true

6==5 = false
!= Diferente 7!=5 = true

6!=6 = false
< Menor que 6<7 = true

8<7 = false
6<6 = false

> Mayor que 6>7 = false
8>7 = true
6>6 = false

<= Menor o igual
que

6<=7 = true
7<=8 = false
6<=6 = true

>= Mayor o igual
que

6>=7 = false
8>=7 = true
6>=6 = true

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 21.

Operadores Lógicos.
Estos evalúan expresiones formadas por operandos que a su vez están formados por
expresiones y su resultado es un valor de verdad.

Operador Accion Ejemplo Tabla de Verdad
&& AND o

Conjunción
(5<4) && (4==5) =
false
(8!=8) && (4<5) =
false
(8==4) && (7<5) =
false
(8!=4) && (4<5) = true

A B A && B
V V V
V F F
F V F
F F F

|| OR o Disyunción (5<4) || (4==5) = false
(8!=8) || (4<5) = true
(8==8)|| (7<5) = true
(8!=4) || (4<5) = true

A B A || B
V V V
V F V
F V V
F F F

! NOT o Negación !(6<7) = false
!(6>7) = true

A !A
V F
F V

Operadores de Cadena.
Las cadenas al ser una clase se pueden trabajar por medio de métodos ya definidos pero
también se pueden operadores que nos ayudaran manipular estos elementos y facilitar su
operación. Podemos utilizar operadores para verificar que una cadena es mayor que otra (>),
concatenar cadenas (+), comparar cadenas (==).

Tarea
(Investigar y crear una tabla de jerarquía de operadores en Java.
(Investigar que es el casting y su aplicación en Java.

Aplicac

OBJET

Al final

• • •

PROC

Introd
Las es
facilita
de cód

Existen
progra•

•

Estruc
En java

if.
La inst

if(x==

}

if……e

Esta es
una va

if(x==

} else

}

switch

iones Cliente S

TIVOS

lizar la Práctic
Crear aplica
Crear aplica
Crear aplica

EDIMIENTO

ducción.
structuras de
r la creación
igo las cuale

n 2 tipos d
mas y estos
Condicional
decisiones
programas.
Repetitivas
código lo qu

cturas cond
a utilizáremo

trucción la ut

5){
System.out

lse.

s una variant
ariante con la

5){
System.out

{
System.out

h.

Servidor

 Estruct

ca, el estudia
aciones con e
aciones con e
aciones con e

e control son
 de aplicacion
s facilitaran e

e estructura
son:
les: las cual
las cuales a

.
: Estas tiene
ue nos ayuda

dicionales
os las condicio

ilizaremos cu

t.println(“Con

te de la estru
 que obtendr

t.println(“Con

t.println(“Con

Guía P
turas de

fo

nte será capa
estructuras co
estructuras re
estructuras de

n una imple
nes en las cu
el flujo de cóm

as de contro

les a partir
afectaran los

en la función
a a

onales if, if …

uando evalua

ndicion Verda

ctura if, en e
remos un res

ndicion Verda

ndicion Falsa”

Práctica N
 control d
r, while.

az de:
ondicionales.
epetitivas.
e control com

mentación d
uales se debe
mo los datos

ol las cuales

de la verific
s resultados

n de que rep

……else, switch

mos si un cas

dera”);

esta se evalúa
ultado aunqu

dera”);

”);

T

No 2
de JAVA:

mbinadas.

e los lengua
en condiciona
 se procesara

s podremos

cación de ci
 de las acci

piten la ejecu

h.

so o condició

a una condici
ue la condició

Tec. En Ingeni

 if, swich

ajes de prog
r o repetir ci
an.

 implementa

ertos eleme
iones o las

ución de cier

ón es verdade

ión es verdad
ón sea falsa.

ería en Sistem

Página 2

h,

gramación pa
ertas porcion

ar en nuestr

ntos se tom
salidas de

rtos bloques

era.

dera pero con

mas

22.

ara
nes

ros

man
los

de

n

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 23.

Esta estructura se conoce como una condicional multicasos ya que para ejecutar un
bloque de instrucciones se evalúa la condición con varios casos, en los cuales se
ejecuta solo cuando se evalué un caso de verdad, pero si en algún momento ningún
caso coincide se ejecuta un caso por defecto.

Int x = 1;
switch(x){
case (1):
 System.out.print(”Primer dia de la Semana”);
break;
case (2):
 System.out.print(”Segundo dia de la Semana”);
break;
case (3):
 System.out.print(”Tercer dia de la Semana”);
break;
case (4):
 System.out.print(” Cuarto dia de la Semana”);
break;
default:
 System.out.print(“Otro dia de la Semana”);
}

Estructuras repetitivas.
Java cuenta con 3 tipos for, while y la variante do…while.

for.
Se usa cuando sabemos en que momento el ciclo se detendrá y la estructura es la siguiente.

class CicloFor {
 public static void main(String[]args){
 int i;
 for(i = 1; i < 101; ++i){
 System.out.print(i + “\t”);

}
 }
}

While.
En este ciclo las repeticiones se ejecutan mientras la evaluación de una condición sea verdadera.

class CicloWhile {
 public static void main(String[]args){
 int i=1;
 while(i < 101){
 System.out.print(i + “\t”);
 ++i;

}
 }
}

do…while
En esta estructura ejecuta primero las instrucciones y después se evalúa la condición para
continuar o detener la ejecución de las instrucciones.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 24.

class CicloDo{
 public static void main(String[]args){
 int i=1;
 do{
 System.out.print(i + “\t”);
 ++i;

}while(i<101);
 }
}
Ejemplo aplicado.
import java.io.*;

public class casos{
public static void main(String args[])throws IOException{
BufferedReader in =new BufferedReader(new InputStreamReader(System.in));

int n1,n2,sum,res,div,multi;
int op;
System.out.print("Elige una opcion\n");
System.out.print("1 = Realizar Suma\n");
System.out.print("2 = Realizar Resta\n");
System.out.print("3 = Realizar una multiplicacion\n") ;
System.out.print("4 = Realizar una division\n");
op=Integer.parseInt(in.readLine());
switch(op){
case 1:
System.out.print("\nintroduce el primer numero \n");
n1=Integer.parseInt(in.readLine());
System.out.print("\nintroduce el segundo numero \n");
n2=Integer.parseInt(in.readLine());
sum=n1+n2;
System.out.println("\nLa Suma es: "+ sum);
break;
case 2:
System.out.print("\nintroduce el primer numero");
n1=Integer.parseInt(in.readLine());
System.out.print("\nintroduce el segundo numero ");
n2=Integer.parseInt(in.readLine());
res=n1-n2;
System.out.println("\nLa Resta es: "+ res);
break;
case 3:
System.out.print("\nintroduce el primer numero");
n1=Integer.parseInt(in.readLine());
System.out.print("\nintroduce el segundo numero ");
n2=Integer.parseInt(in.readLine());
multi=n1*n2;
System.out.print("\nLa Multiplicacion es: "+ multi);
break;
case 4:
System.out.print("\nintroduce el primer numero");
n1=Integer.parseInt(in.readLine());
System.out.print("\nintroduce el segundo numero ");
n2=Integer.parseInt(in.readLine());
if(n2==0){
 System.out.print("\nError division entre 0 ");
}else{
div=n1/n2;
System.out.print("\nLa Division es: "+ div);

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 25.

}
break;
default:
System.out.print("\neleccion incorrecta");
}
}
}

La instrucción BufferedReader in =new BufferedReader(new
InputStreamReader(System.in)) se utiliza para crear un elemento que nos permitirá hacer
lecturas desde el teclado, y in.readLine() se utilizara para poder pedir datos por medio de la
consola en nuestras aplicaciones en Java

Ejercicios
(Cree una aplicación en Java que a partir del sueldo de un empleado calcule el descuento

de la renta, verificar si se puede aplicar dicho descuento y mostrar en pantalla el sueldo
total que recibirá el empleado.

(Cree una aplicación en Java que permita calcular el factorial de un número entero.
(Cree una aplicación en Java que imprima los primeros 100 números primos.

Aplicac

OBJET

Al final• • • • • • •

DESAR

Introd

El elem
la form
Para cr
class s
clase.

class Ej

}

Un arc
la exte
Ejemp
el nom

Una cl
orienta
en form
clase p
objeto

class N
tipo_de
tipo_de
// . . .
tipo_de
cuerpo
}
tipo_de
cuerpo
}
// . . .
}

iones Cliente S

TIVOS

lizar la clase,
Definir que
Definir que
Definir mé
Definir insta
Definir mec
Definir que
Identificar i

RROLLO

ducción

mento básico
ma y comport
rear una clas
seguida de un

jemplo {

hivo de Java
ensión ".java
lo.java. Hay

mbre de la cla

ase es un c
ada a objetos
ma de métod
para crear in
 se utilizan d

Nombre_De_C
e_variable no
e_variable no

evuelto nomb

o_del_método

evuelto nomb
o_del_método

Servidor

Cla
M

el estudiante
 es una clase
 es un atribut
todos de la c
ancias y refe
canismos de a
 es una interf
instrucciones

 de la progra
amiento de u

se sólo se nec
n identificado

 debe tener e
". Por ejemp
que tener pr
se y el de arc

conjunto de
s(POO). Por l
dos. Cuando s
nstancias de
e manera ind

Clase {
ombre_de_at
ombre_de_at

bre_de_méto
o1;

bre_de_méto
o2;

Cla
ses, Atrib
Manejo d

e será capaz d
e y las partes
to de la clase

clase
rencias en Ja
aplicación de
fase en Java.

s para el man

amación orien
un objeto.
cesita un arc

or legal y un

el mismo nom
plo la clase Ej
esente que e
chivo fuente

métodos y v
lo tanto defin
se ejecuta un
las clases, q

distinta. La fo

tributo1;
tributo2;

odo1(lista_de

odo2(lista_de

ase Nº 3
butos , M

de Excepc

de:
 que la confo
e

ava
 herencia ent
.

nejo de excep

ntada a objet

chivo fuente q
bloque delim

mbre que la c
jemplo se gu

en Java se dif
han de ser e

variables rela
ne la estructu
n programa e
que son los o
orma general

e_parámetros

e_parámetros

T

Métodos y
ciones.

orman.

tre clases de

pciones en Jav

tos en Java e

que contenga
itado por dos

clase que con
uardaría en u
ferencia entre
xactamente i

acionadas, ba
ura de un obj
en Java, el sis
objetos reale
 de una defin

s) {

s) {

Tec. En Ingeni

y

 Java

va

es la clase. U

a la palabra c
s llaves para

tiene, y se le
un fichero qu
e mayúsculas
iguales.

asadas en la
jeto y su inte
stema utiliza
s. Los térmi

nición de clas

ería en Sistem

Página 2

Una clase defi

clave reserva
 el cuerpo de

es suele asign
ue se denomi
s y minúscula

a programaci
erfaz funcion
 definiciones
nos instancia
e es:

mas

26.

ine

ada
e la

nar
ina
as;

ión
nal,
 de
a y

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 27.

Los tipos tipo_de_variable y tipo_devuelto, han de ser tipos simples Java o nombres de otras
clases ya definidas. Tanto Nombre_De_Clase, como los nombre_de_atributo y
nombre_de_método, han de ser identificadores Java válidos.
Además la clase consta de dos partes fundamentales las cuales son la: • Declaración de la clase: en esta parte se define el nombre de la clase y la definición de

si heredara elementos de otras clases, y otros atributos que serán indispensables
según las necesidades de las aplicaciones que creemos. • Cuerpo de la clase: en esta parte se declaran todos los método(funciones) y
atributos(variables), que permiten la ejecución de acciones y devolución de resultados
de los procesos de la clase.

Los datos se encapsulan dentro de una clase declarando variables dentro de bloques de código
que se distinguen por empezar por una llave de apertura, el contenido del bloque y la llave de
cierre, dentó del contenido del bloque de código podremos encontrar variables y funciones.
Vistos los Elementos anteriores vamos a definir los modificadores de acceso que son elementos
que indican como se comportan los objetos y si pueden compartir datos entre ellos y otras
clases.

Modificadores de Clases • public - Todas las clases puede acceder al elemento. Si es un dato miembro, Todas las

clases puede ver el elemento, es decir, usarlo y asignarlo. Si es un método Todas las
clases puede invocarlo. • private - Sólo se puede acceder al elemento desde métodos de la clase, o sólo puede
invocarse el método desde otro método de la clase. • protected - es una combinación de los accesos que proporcionan los modificadores
public y private. proporciona acceso público para las clases derivadas y acceso privado
para el resto de clases. • sin modificador - Se puede acceder al elemento desde cualquier clase del package donde
se define la clase.

Modificadores de métodos variables • static - que se usa para definir datos miembros o métodos como pertenecientes a una

clase, en lugar de pertenecer a una instancia. • final – se usa para indicar que un método, un dato miembro (variable) no se podrán
redefinir dentro de otra ya sea que se utilice herencia o instancias, además se usa para
definir un valor constante en el caso de las variables. • abstract – Se utiliza para crear métodos o clases abstractas o sea que no tienen
implementación (nada de código). • synchronized - se usa para indicar que ciertas partes del código, (habitualmente, una
función miembro) están sincronizadas, es decir, que solamente un subproceso puede
acceder a dicho método a la vez.

Los atributos

En java a las variables se les conoce como atributos. Se declaran igual que las variables locales
de un método en concreto.
Por ejemplo, este es un programa que declara una clase Ejemplo, con dos atributos enteros
llamados x e y.

class Ejemplo {

int x, y;

}

Los atributos se pueden declarar con dos clases de tipos: un tipo simple Java (int, float,
boolean), o el nombre de una clase (será una referencia a objeto).

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 28.

Cuando se realiza una instancia de una clase (creación de un objeto) se reservará en la memoria
un espacio para un conjunto de datos como el que definen los atributos de una clase. A este
conjunto de variables se le denomina variables de instancia.

Los métodos

Los métodos son subrutinas que definen la interfaz de una clase, sus capacidades y
comportamiento.
Un método ha de tener por nombre cualquier identificador legal distinto de los ya utilizados por
los nombres de la clase en que está definido. Los métodos se declaran al mismo nivel que las
variables de instancia dentro de una definición de clase.

En la declaración de los métodos se define el tipo de valor que devuelven y a una lista formal de
parámetros de entrada, de sintaxis tipo identificador separadas por comas. La forma general de
una declaración de método es:

tipo_devuelto nombre_de_método(lista-formal-de-parámetros) {

cuerpo_del_método;

}

Por ejemplo el siguiente método devuelve la suma de dos enteros:

int metodoSuma(int paramX, int paramY) {

return (paramX + paramY);

}

En el caso de que no se desee devolver ningún valor se deberá indicar como tipo la palabra
reservada void. Así mismo, si no se desean parámetros, la declaración del método debería incluir
un par de paréntesis vacíos (sin void):

void metodoVacio() { };

La instanciación de las clases: Los objetos

Referencias a Objeto e Instancias

Una referencia a un objeto es el paso previo para obtener una instancia de la clase tipo del
objeto. Cuando referenciamos un objeto estamos declarando un objeto (variable) de la clase tipo
y le estamos asignando un valor inicial

Ejemplo Ej;

Esta es una declaración de una variable Ej que es una referencia a un objeto de la clase
Ejemplo, de momento con un valor por defecto de null.
Ahora la instancia del objeto se realiza dando un valor a la variable que creamos anteriormente,
el valor debe de ser un objeto al que se hace la referencia en este caso la declaración quedaría
de la siguiente manera:

Ejemplo Ej;

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 29.

Ej = new Ejemplo();

Esta declaración define que tipo de objeto utilizaremos y como lo llamaremos además que
automáticamente implementaremos todas las variables y métodos del objeto al cual se hace la
llamada por medio de la declaración new Ejemplo()
Constructores

Las clases pueden implementar un método especial llamado constructor. Un constructor es un
método que inicia un objeto inmediatamente después de su creación. De esta forma nos
evitamos el tener que iniciar las variables explícitamente para su iniciación.

El constructor tiene exactamente el mismo nombre de la clase que lo implementa; no puede
haber ningún otro método que comparta su nombre con el de su clase. Una vez definido, se
llamará automáticamente al constructor al crear un objeto de esa clase (al utilizar el operador
new).

El constructor no devuelve ningún tipo, ni siquiera void. Su misión es iniciar todo estado interno
de un objeto (sus atributos), haciendo que el objeto sea utilizable inmediatamente; reservando
memoria para sus atributos, iniciando sus valores.
Por ejemplo:

Class Ejemplo{

Ejemplo() {
 int x=5;
 int y=2;
}
}

Este constructor denominado constructor por defecto, por no tener parámetros, establece el
valor 5 a la variable x y de 2 a la variable y esos valores se iniciaran automáticamente por ser
parte del constructor.
El compilador, por defecto, llamará al constructor de la superclase Object() si no se especifican
parámetros en el constructor.
Este otro constructor, sin embargo, recibe dos parámetros:

public class Datos {
 int a,b;
Datos(int y, int x){
 a=y;
 b=x;
}
}
La lista de parámetros especificada después del nombre de una clase en una sentencia new se
utiliza para pasar parámetros al constructor.
Se llama al método constructor justo después de crear la instancia y antes de que new devuelva
el control al punto de la llamada.

Así, cuando ejecutamos el siguiente programa:

Datos dat = new Datos(1, 5);

System.out.println(“Dato 1 = ” + dat.a);
System.out.println(“Dato 2 = ” + dat.b);

/*
Se muestra en la pantalla:

Aplicac

Dato 1
Dato 2

Esto in
una pr
código

 pub
 Sy
 }

 pub
 Sys
 }

 pub
 Sys
 }

 pub
 Sys
 }
}

Entonc
diferen

La he
Es el m
clases

Los de
hayan

La cara
que la
puede

En tod
relacio
de la c

En jav
que to
herenc
definen
herenc

iones Cliente S

1 = 1
2 = 5 */

ndica que un
regunta ¿cua
:

lic Constructo
ystem.out.pri

lic Constructo
stem.out.prin

lic Constructo
stem.out.prin

lic Constructo
stem.out.prin

ces pueden d
ntes parámet

erencia
mecanismo fu
 de manera je

escendientes
 especificado

acterística de
 especializan
 mostrar med

do lenguaje
onan en térm
cual derivan t

a par indicar
mar muy en

cia múltiple,
n de esta fo
cia

Servidor

 constructor p
ntos constru

or() {
ntln("nada");

or(String tipo
ntln("un valor

or(int distanc
ntln("Un valor

or(int distanc
ntln("Un " + t

definirse muc
ros y a esto s

undamental d
erárquica; un

de una clas
 como hereda

e herencia, n
n de alguna
diante un árb

orientado a
inos de heren
todas las dem

 que una clas
 cuenta que
los element

orma no se p

podrá recibir
ctores puede

;

o) {
r de Cadena "

cia) {
r entero " +

cia,String tipo
tipo + " corre

hos construc
se le denomi

de relación e
na clase padr

e heredan to
ables, ademá

nos permite d
 manera. As
bol de herenc

 objetos exi
ncia. En Java

más clases.

se heredará
solo se pued
os heredado
podrá accede

 parámetros
e tener una c

" + tipo);

 distancia + "

o) {
e a " + distan

ctores dentro
na como sob

ntre clases e
re o superclas

odas las vari
ás de crear lo

definir nueva
í logramos d
ia.

iste una jera
a, el punto m

de otra se de
de heredar de
s deben de
er ellos. Ve

T

como un mé
clase? La res

" metros");

ncia + " metr

 de una clas
bre carga de

en la orientac
se sobre otra

iables y mét
os suyos prop

s clases deri
definir una j

arquía, medi
ás alto de la

efine la palab
e una clase a
ser de tipo
amos un eje

Tec. En Ingeni

étodo cualquie
spuesta esta

os");

e siempre y
el constructo

ción a objetos
s clases hijas

todos que su
pios.

vadas de otr
erarquía de

iante la que
 jerarquía es

bra reservada
a la vez en ja
 static ya qu
emplo de cóm

ería en Sistem

Página 3

era, pero sur
en el siguien

cuando teng
or.

s. Relaciona
s o subclases

us ascendient

ra ya existen
clases, que

e las clases
 la clase Obje

a extends, h
ava no existe
ue un si no
mo funciona

mas

30.

rge
nte

gan

las
s.

tes

te,
se

se
ect

hay
e la

se
 la

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 31.

En el ejemplo anterior podemos observar que la herencia se hace desde una clase en este caso
denominada Madre a la cual se le conoce como súper clase ya que esta no hereda de otras
clases pero si comparte atributo y métodos con otras clases. Esta le pasa todos los atributos a la
clase hija o sub clase pero esta a su vez puede modificar los atributos según convenga y
además lo heredera también a la clase nieta que al igual que la clase hija podrá modificar los
atributos según sea necesario. Ahora si no se quisiera heredar algún atributo o método lo único
que se hace es definir el modificador de acceso private para que ese elemento se único de la
clase en que se implementa.

Interface
El concepto de Interface lleva un paso más adelante la idea de las clases abstractas. En Java una
interface es una clase abstracta pura, es decir una clase donde todos los métodos son abstractos
(no se implementa ninguno). Permite al diseñador de clases establecer la forma de una clase
(nombres de métodos, listas de argumentos y tipos de retorno, pero no bloques de código).

Una interface puede también contener datos miembro, pero estos son siempre static y final. Una
interface sirve para establecer un 'protocolo' entre clases.
Para crear una interface, se utiliza la palabra clave interface en lugar de class. La interface
puede definirse public o sin modificador de acceso, y tiene el mismo significado que para las
clases. Todos los métodos que declara una interface son siempre public.

Para indicar que una clase implementa los métodos de una interface se utiliza la palabra clave
implements. El compilador se encargará de verificar que la clase efectivamente declare e
implemente todos los métodos de la interface. Una clase puede implementar más de una
interface.

public class Madre {
 static int edad=69;
 static double altura =1.67;
 static String
color_pelo="cafe";
static void abrazo(){
 System.out.print("XD");
}
}

public class Hija extends Madre{
 static int edad = 25;
 public static void main
(String[]args){
 System.out.println(edad);
 System.out.println(altura);
 color_pelo="rojo";
 Madre.abrazo();
 }

public class Nieta extends Hija{
public static void main
(String[]args){
 System.out.println(edad);
 System.out.println(altura);
 Hija.abrazo();
 color_pelo="Rosado";

System.out.println(color_pelo);

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 32.

Declaración y uso

Una interface se declara:
interface nombre_interface {
 tipo_retorno nombre_metodo (lista_argumentos) ;
 . . .
}

interface InstrumentoMusical {
 void tocar();
 void afinar();
 String tipoInstrumento();
}

Y una clase que implementa la interface:

class InstrumentoViento extends Object implements InstrumentoMusical {
 void tocar() { . . . };
 void afinar() { . . .};
 String tipoInstrumento() {}
}
class Guitarra extends InstrumentoViento {
 String tipoInstrumento() {
 return "Guitarra";
 }
}

La clase InstrumentoViento implementa la interface, declarando los métodos y escribiendo el
código correspondiente. Una clase derivada puede también redefinir si es necesario alguno de
los métodos de la interface.

Referencias a Interfaces

Es posible crear referencias a interfaces, pero las interfaces no pueden ser instanciadas. Una
referencia a una interface puede ser asignada a cualquier objeto que implemente la interface.
Por ejemplo:

InstrumentoMusical instrumento = new Guitarra();
instrumento.play();
System.out.prinln(instrumento.tipoInstrumento());
InstrumentoMusical i2 = new InstrumentoMusical(); //error.No se puede instanciar

Extensión de interfaces

Las interfaces pueden extender otras interfaces y, a diferencia de las clases, una interface puede
extender más de una interface. La sintaxis es:

interface nombre_interface extends nombre_interface , . . . {
 tipo_retorno nombre_metodo (lista_argumentos) ;
 . . .
}

GESTIÓN DE EXCEPCIONES Y ERRORES

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 33.

El control de flujo en un programa Java puede hacerse mediante las ya conocidas sentencias
estructuradas (if, while, return). Pero Java va mucho más allá, mediante una técnica de
programación denominada gestión de excepciones.
Mediante las excepciones se podrá evitar repetir continuamente código, en busca de un posible
error, y avisar a otros objetos de una condición anormal de ejecución durante un programa.

Tipos de excepciones

Existen varios tipos fundamentales de excepciones: • Error: Excepciones que indican problemas muy graves, que suelen ser no recuperables y

no deben casi nunca ser capturadas. • Exception: Excepciones no definitivas, pero que se detectan fuera del tiempo de
ejecución. • RuntimeException: Excepciones que se dan durante la ejecución del programa.

Todas las excepciones tienen como clase base la clase Throwable, que está incluida en el
paquete java.lang.

Funcionamiento

Para que el sistema de gestión de excepciones funcione, se ha de trabajar en dos partes de los
programas: • Definir qué partes de los programas crean una excepción y bajo qué condiciones. Para

ello se utilizan las palabras reservadas throw y throws. • Comprobar en ciertas partes de los programas si una excepción se ha producido, y
actuar en consecuencia. Para ello se utilizan las palabras reservadas try, catch y
finally.

Manejo de excepciones: try - catch – finally

Cuando el programador va a ejecutar un trozo de código que pueda provocar una excepción
(pedir un dato por teclado), debe incluir este fragmento de código dentro de un bloque try:

try {

 // Código posiblemente problemático

}

Pero lo importante es cómo controlar qué hacer con la posible excepción que se cree. Para ello
se utilizan las cláusulas catch, en las que se especifica que acción realizar:

try {

 // Código posiblemente problemático

} catch(tipo_de_excepcion e) {

 // Código para solucionar la excepción e

} catch(tipo_de_excepcion_mas_general e) {
 // Código para solucionar la excepción e

}

En el ejemplo se observa que se pueden anidar sentencias catch, pero conviene hacerlo
indicando en último lugar las excepciones más generales (es decir, que se encuentren más

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 34.

arriba en el árbol de herencia de excepciones), porque el intérprete Java ejecutará aquel bloque
de código catch cuyo parámetro sea del tipo de una excepción lanzada.

Si por ejemplo se intentase capturar primero una excepción Throwable, nunca llegaríamos a
gestionar una excepción Runtime, puesto que cualquier clase hija de Runtime es también hija de
Throwable, por herencia.

Si no se ha lanzado ninguna excepción el código continúa sin ejecutar ninguna sentencia catch.
Pero, ¿y si quiero realizar una acción común a todas las opciones?. Para insertar fragmentos de
código que se ejecuten tras la gestión de las excepciones. Este código se ejecutará tanto si se ha
tratado una excepción (catch) como sino. Este tipo de código se inserta en una sentencia finally,
que será ejecutada tras el bloque try o catch:

try {

} catch(Exception e) {

} finally {

 // Se ejecutara tras try o catch

}

Lanzamiento de excepciones: throw – throws

Muchas veces el programador dentro de un determinado método deberá comprobar si alguna
condición de excepción se cumple, y si es así lanzarla. Para ello se utilizan las palabras
reservadas throw y throws.

Por una parte la excepción se lanza mediante la sentencia throw:

if (condicion_de_excepcion == true)

 throw new miExcepcion();

Se puede observar que hemos creado un objeto de la clase miExcepcion, puesto que las
excepciones son objetos y por tanto deberán ser instanciadas antes de ser lanzadas.
Aquellos métodos que pueden lanzar excepciones, deben indicarse cuáles son esas excepciones
en su declaración. Para ello se utiliza la sentencia throws:

tipo_devuelto miMetodoLanzador() throws miExcep1, miExcep2 {

 // Código capaz de lanzar excepciones miExcep1 y miExcep2

}

Tarea
(investigar los métodos y atributos de la clase object.
(Investigar los métodos y atributos de la clase Throwable.

Aplicac

OBJET

Al final

• • •

PROC

Introd
Las cla
necesa
aplicac
flujo c
implem
nuestr

Operea
public

 dou
 r
 }

 dou
 r
 }

}

Ya crea
operac

OpeCu
public
 stat
 O
 o

 d
 O
 v
 V
 I
 S

 v
 v

iones Cliente S

Clases,

TIVOS

lizar la Práctic
Crear refer
Crear here
Crear man

EDIMIENTO

ducción.
ases en Jav
arios para c
ción completa
ompleto de i

mentarlos y
as aplicacion

aciones.java
class Operac

ble potencia(
return(Math.p

ble raiz(doub
return(Math.s

ada la clase c
ciones

adratica.java
class OpeCua

tic void OpCu
Operaciones
op=new Ope

double valorP
Op1=-1*b;
valPot=op.po
ValD=2*a;
If(valPot < 1
System.out.p
} else {
valorPos=(Op
valorNeg=(O

Servidor

 Atributo

ca, el estudia
rencias e inst
encia entre cla
ipuladores de

va son los e
rear aplicaci
a y los atribu
información,
utilizarlos p
es primero cr

iones {

(double Val1,
pow(Val1, Va

ble Val){
sqrt(Val));

creamos una

a
adratica {
adratica(dou
op;
raciones();

Pos, valorNeg

otencia(b, 2.0

1){
print(“Error lo

p1+ op.raiz(v
Op1- op.raiz(v

 Guía P
os , Métod

nte será capa
tancias en Jav
ases de Java
e excepcione

elementos en
iones ya qu
tos y método
 por tal moti
ara poder b
reemos una c

,double Val2)
l2));

 nueva clase

ble a,double

g,valPot,Op1,

0)-4*(a*c);

os datos han

valPot))/ValD
valPot))/ValD

Práctica N
dos y Ma

az de:
va.
.
s en Java.

n los cuales
ue un conju
os relacionad
ivo es indisp
brindar soluc
clase sencilla

){

 la con la cua

 b,double c){

,ValD;

 devuelto una

D;
D;

T

No 3
nejo de E

s se agrupan
nto de clase
os entre esta
ensable sabe
ciones a los
 la cual llama

al crearemos

{

a raiz negativ

Tec. En Ingeni

Excepcion

n los métod
es pueden c
as se compar
er la mejor f
 problemas
aremos.

una referenc

va”);

ería en Sistem

Página 3

nes..

dos y atribut
conformar u
ten y logran
forma de pod
planteados

ia a la clase

mas

35.

tos
una
un

der
en

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 36.

 System.out.print("El resultado del calculo es:\nValor Positivo:"+valorPos+"\nValor
Negativo:"+valorNeg);
 }
 }

public static void main(String[]args){

 OpCuadratica(2,3,1);

}
}

Ahora utilizaremos la clase creada antes pero esta vez heredaremos las funciones y además
agregaremos un manejador de excepción con el cual podremos advertir al usuario si hay un
error al introducir los datos

import java.io.*;
public class Cuadratica extends OpeCuadratica{

 public static void main(String[]args) throws IOException{
 BufferedReader in ;
 in=new BufferedReader(new InputStreamReader(System.in));
 double a,b,c;
 try{
 System.out.print("Digite el Valor de A:\n");
 a=Double.valueOf(in.readLine());
 System.out.print("Digite el Valor de B:\n");
 b=Double.valueOf(in.readLine());
 System.out.print("Digite el Valor de C:\n");
 c=Double.valueOf(in.readLine());
 OpCuadratica(a,b,c);
 }catch(Exception e){
 System.out.print("Error en la introducción de los Datos" +e.getMessage());
 }

 }

}

Con estas clases se puede revisar como se aplica la herencia y las referencias a clases y a la vez
como se implementa un manejador de excepción.

Revisemos el siguiente ejemplo donde se aplica una sobrecarga de constructores.

mensaje.java
public class mensaje {
 mensaje(int val1){
 System.out.print("\nvalor almacenado "+val1);
 }
 mensaje(double val1){
 System.out.print("\nvalor almacenado " +val1);
 }

 mensaje(String val1){
 System.out.print("\nvalor almacenado " +val1);
 }

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 37.

}

Constructores.java
public class Constructores {
 public static void main(String[]args){
 mensaje m1,m2,m3;
 m1 = new mensaje(3);
 m2 = new mensaje(2.38);
 m3 = new mensaje("Caracteres");
 }

}

Con estas 2 clases se verifica como se sobrecarga un método constructor, y verificamos que al
tener parámetros diferentes no afecta que poseen al mismo nombre.
 (Crear una clase en Java con la cual se sobre cargue 3 constructores los cuales permitan sumar 2

valores del mismo tipo. (Crear una clase en Java que implemente 5 métodos para realizar cálculos de áreas de diferentes
polígonos (rectángulo, triángulos, rombo etc). (Crear una clase que haga la referencia a la clase creada anteriormente e implemente las funciones
creadas realizando el calculo de 3 áreas de polígonos diferentes.

Aplicac

OBJET

Al final

• • •

DESAR

Introd
En el d
ventan
la info
engorr
inform
se enc
escritu
Pero r
mayor
GUI’S.
se imp
evento• •

AWT
La Abs
kit de
platafo
estand
Dentro
ventan
El AWT
excluy
Estruct
La estr
continu• •

•

•

•

•

•

iones Cliente S

TIVOS

lizar la clase,
Definir que
Definir libre
Definir cara

RROLLO

ducción.
desarrollo de
nas, el trabajo
rmación de l
roso el trab
ación, por ta

cargan de mo
ura), una mej
resulta un p
ía de lenguaj
 En java pod

portan y perm
os estas biblio

Java AWT(A
Java Swing

stract Window
herramientas

orma original
dar para sumi
o del AWT El
na principal d
T se encuentr
e de Java po
tura del AWT
ructura de la
uación:

Los Conten
No se usan
disposición
El común
eventos
Alto nivel d
(no hay áre
La arquitec
un tamaño
Es bastante
que un diál
Carece de
propiament

Servidor

Intro

el estudiante
 es un GUI.
erías para la c
acterísticas de

 aplicaciones
o a modo de
as salidas de

bajo de solo
al motivo se h
ostrar por m
jor presentac

poco complic
jes de progr
emos encont

miten la imple
otecas son:
Abstract Wind
.

w Toolkit (AW
s de gráficos
 de Java. AW
inistrar una in
Contenedor d
e la aplicació
ra desfasado
r que su uso

T
a versión act

edores contie
 posiciones fi
 controlada (
denominador

de abstracción
eas cliente, n
tura de la ap
 fijo
e dependiente
ogo tendrá e
 un formato
te interface. N

Cla
ducción a
y Model

e será capaz d

creación de i
e la tecnolog

s con Java ex
 consola resu
e los program
o teclear co
hace uso de

medio de obje
ción de nues
ado para el
amación imp
trar dos biblio
ementación d

dow ToolKit).

WT, en españ
, interfaz de

WT es ahora
nterfaz gráfic
de los Compo
ón.
 con respecto
 que se le da

tual del AWT

enen Compon
ijas de los Co
layouts)
r de más ba

n respecto al
i llamadas a

plicación es de

e de la máqu
l mismo tam

o de recurso
No hay ningú

ase Nº 4
a la inter
o de Eve

de:

nterfaces gra
ía Swing de j

xisten 2 form
ulta sencillo y
ma de una fo
omandos par
interfaces gr
etos de vent
tro programa
 programado

plementa sus
otecas las cua
de las clases

ñol Kit de Her
 usuario, y s
parte de las

ca de usuario
onentes es el

o a la creació
 es el del co

 se puede re

nentes, que s
omponentes,

ajo nivel se

 entorno de v
X, ni hWnds,
ependiente d

uina en que s
año en cada

os. No se p
ún diseñador

T

rfaz Gráfi
entos.

aficas.
java.

mas de trabaj
ya que en líne
orma sencilla
ra que nue
aficas para lo
anas(botones
a y facilita a
or crear dic

s propias bibl
ales permiten
 para la crea

rramientas d
istema de ve
 Java Founda

o (GUI) para u
l Frame o s

ón de GUI’s, p
ntrol de even

esumir en los

son los contro
 sino que est

acerca al te

ventanas en
, etc.)
del entorno de

e ejecuta la a
máquina)
uede separa
de interfaces

Tec. En Ingeni

ica

jo el modo d
ea de coman
a pero a la v
stros progra
os usuarios(G
s, cajas de t
l usuario el u
hos element
liotecas para
n generar las
ción de objeo

e Ventana A
entanas indep
ation Classes
un programa
e puede deno

pero la bibliot
ntos.

s puntos que

oles básicos
tán situados a

eclado, ratón

que se ejecu

e ventanas, e

aplicación (no

ar el código
s

ería en Sistem

Página 3

e consola y
dos se muest

vez resulta m
amas proces
GUI), las cua
texto, áreas
uso del mism
tos, aunque
 la creación

s GUI las cua
os y manejo

bstracta) es
pendiente de
s (JFC) - la A
 Java.
ominar como

teca AWT no

e se exponen

a través de u

n y manejo

ute la aplicaci

en vez de ten

o puede asum

 de lo que

mas

38.

las
tra

muy
sen
les
de

mo.
 la
de
les
 de

un
e la
API

o la

 se

n a

una

de

ión

ner

mir

es

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 39.

 Ventana creada con AWT

Swing
Es una biblioteca gráfica para Java que forma parte de las Java Foundation Classes (JFC).
Incluye widgets para interfaz gráfica de usuario tales como cajas de texto, botones,
desplegables y tablas.

Swing es una plataforma independiente. Sigue un simple modelo de programación por hilos, y
posee las siguientes características principales:
 • Independencia de plataforma: Swing es una plataforma independiente en ambos

términos de su expresión (java) y de su implementación (no-nativa interpretación
universal de widgets). • Extensibilidad: Swing es una arquitectura altamente particionada que permite la
utilización de diferentes pluggins en específicos interfaces de diferentes frameworks: Los
usuarios pueden proveer sus propias implementaciones modificadas para sobrescribir las
implementaciones por defecto. En general, los usuarios de swing pueden extender el
framework para: extender clases existentes (framework); proveyendo alternativas de
implementación para elementos esenciales. • Orientado a componentes: Swing es un framework basado en componentes. La
diferencia entre objetos y componentes es un punto bastante sutil: concisamente, un
componente es un objeto de buena conducta con un patrón conocido y especificado
característico del comportamiento. • Customizable: Dado el modelo de representación programático del framework de
swing, el control permite representar diferentes 'look and feel' (desde MacOS look and
feel hasta Windows XP look and feel). Más allá, los usuarios pueden proveer su propia
implementación look and feel, que permitirá cambios uniformes en el look and feel
existente en las aplicaciones Swing sin efectuar ningún cambio al código de aplicación. • Lightweight UI: La magia de la flexibilidad de configuración de Swing, es también
debido al hecho de que no utiliza los controles del GUI del OS nativo del host para la
representación, pero usa parte de los apis 2D de Java.

 Ventana creada con Swing

Es muy importante entender y asimilar el hecho de que Swing es una extensión del AWT, y no
un sustituto encaminado a reemplazarlo. Aunque esto sea verdad en algunos casos en que los
componentes de Swing se corresponden a componentes del AWT; por ejemplo, el JButton de
Swing puede considerarse como un sustituto del Button del AWT.

Ejmeplo de uso de Swing
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class HolaMundoSwing {
 public static void main(String[] args) {
 JFrame frame = new JFrame("HolaMundoSwing");

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 40.

 final JLabel label = new JLabel("Hola Mundo");
 frame.getContentPane().add(label);

 // listener para disparar el evento de cierre de ventana

 frame.addWindowListener(new java.awt.event.WindowAdapter(){
 public void windowClosing(WindowEvent e){
 System.exit(0);
 }
 }
);

 frame.pack();
 frame.setVisible(true);
 }
}

Salida del Código

Principales aspectos de una aplicación Swing
Como ya se dijo antes, cada aplicación Swing debe tener al menos un top-level container que
contendrá toda la aplicación, estos pueden ser • javax.swing.JFrame: Una ventana independiente. • javax.swing.JApplet: Un applet. • Diálogos: ventanas de interacción sencilla con el usuario como por ejemplo:

o java.swing.JOptionPane: Ventana de diálogo tipo SI_NO, SI_NO_CANCELAR,
ACEPTAR, etc...

o java.swing.JFileChooser: Ventana para elegir un archivo.
o java.swing.JColorChooser
o etc.

A un contenedor se le pueden agregar otros contenedores o componentes simples.

Tarea:
(Investigar la estructura de los paquetes AWT y Swing.

Aplicac

OBJET

Al final

PROC

Para c
adicion
Lo que
no que
están i

1.

2.

iones Cliente S

TIVOS

lizar la Práctic
• Cre• Cre

EDIMIENTO

rear interfac
nal ya que el
e debemos to
e debemos s
incluidos en e

 Agregar u
Forms y e

 Colocar el
donde pod

Área
Trab

Servidor

 Es

ca, el estudia
ar clases con
ar aplicacion

es graficas c
 IDE cuenta

omar muy en
seleccionar e
el IDE para e

n nuevo arc
el tipo de arch

 nombre de
remos crear

a de
bajo

Guía P
squema d

orientad

nte será capa
n componente
es para mani

con Java Net
 con las herr
 cuenta es q

específicamen
llo realizarem

chivo en su
hivo Jframe

la clase y da
y manipular

Práctica N
de una ap
da a even

az de:
es de interfas
ipular datos c

Beans no ne
ramientas ne
ue no utilizar

nte los tipos
mos los siguie

proyecto se
 Form, dar cl

ar clic en fin
de forma vis

T

No 4
plicación
ntos.

se grafica sw
con interfase

cesitamos in
cesarias para
remos los arc
 de archivos
entes pasos.

eleccionando
lic en siguien

nalizar aparec
ual los formu

Tec. En Ingeni

n

ing.
 grafica.

nstalar ningun
a crear estos
chivos de cla
 de interface

la categorí
te.

cera una are
ularios y cont

ería en Sistem

Página 4

n complemen
s componente
ses comunes
es graficas q

ía Swing G

ea de trabjo
roles Swing.

Pa
Co

Pa
Pr

mas

41.

nto
es.
s si
que

UI

en

aleta de
ontroles

aleta de
ropiedades

Aplicac

Ya crea
realiza
contro

Ejemp
Ejemp
Cream
cual se
clic de
selecci

Al dar
se ejec

private
jTextFi
}

Ahora

iones Cliente S

ado el archiv
remos es el a
l y ponerlo so

plos de uso d
lo1
os un formu
erá mostrar u
erecho sobre
onaremos lo

 clic nos pare
cutarán cuan

e void jButton
ield1.setText

probamos el

Servidor

o lo único qu
arrastrar el c
obre el formu

de controles

lario con un
un mensaje e
 el control a
 siguiente.

ecerá la venta
do demos clic

n1MouseClick
("Ejemplo de

 resultado eje

e nos resta e
ontrol de la p

ulario.

s y eventos

 Jtextfield y
en la caja de
l cual le que

ana de codifi
c sobre el bo

ked(java.awt.
e Acción");

ecutando la c

es agregar los
paleta hacia e

 de un form

un Jbutton y
e texto. Para
eramos defin

cación donde
tón en nuest

.event.Mouse

clase.

T

s controles p
el área del fo

ulario.

y definimos u
 agregar eve
nir una acció

e debemos ag
ro ejemplo se

eEvent evt) {

Tec. En Ingeni

ara ello el pr
ormulario o da

una acción pa
ntos lo que h
n y en el m

gregar las ins
erán las sigu

{

ería en Sistem

Página 4

oceso que
ar clic sobre

ara el botón,
haremos es d

menú contextu

strucciones q
ientes.

mas

42.

el

 la
dar
ual

que

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 43.

De esta forma podemos crear interfaces graficas y adicionar eventos .

Ejemplo2
Crearemos un formulario con 2 cajas de texto y crearemos una acción para que al teclear un
texto en la caja 1 todo lo que tecleemos pase a la caja 2 el código para hacer lo siguiente.

private void jTextField1KeyTyped(java.awt.event.KeyEvent evt) {
jTextField2.setText(jTextField1.getText());
}

Ejercicios. • Cree un formulario para calcular la suma de 2 cantidades (utilice las funciones valueOf
para poder cambiar los tipos de datos.). • Cree un formulario para la captura de datos de usuario(nombre, edad, estado civil, etc.)
e imprímalos dentro de un control Jlabel cuando se presione un botón en el mismo
formulario.

Aplicac

OBJET

Al final

• • •

DESAR

Introd
Para e
estas
necesa
Es imp
y para

Desar
Lo prim
o para
númer
¿Que n
La resp• • • •

La inte
de la s

Ahora
necesa
necesa
un asp
no rec
conver
datos a
su fun
obtend
harem

iones Cliente S

TIVOS

lizar la clase,
Definir Elem
Definir el us
Definir el em

RROLLO

ducción.
l desarrollo d
deberán pos

arios para su
portante ento
 compartirlos

rrollo de un
mero que deb
a que usos se
ros enteros.
necesitamos p
puesta a dich

Un formula
2 cajas de
Un botón (
Y labels qu

erfase quedar
siguiente form

tenemos qu
arias para qu
arios para cod
pecto del cua
conocen cant
rtir los datos
a operar en e

nción valueO
dremos los d
os con la fun

Servidor

D

el estudiante
mentos para e
so de método
mpleo adecua

de Interfaces
seer tanto d
 funcionamien
onces reconoc
s entre los mi

na interfas
bemos conoce
e crearía. Ap

pare crear di
ha pregunta e
ario para con
 texto (JText
(JButton).
ue se conside

ra
ma.

ue codificar
ue se pueda
dificar de form
l hablamos e
tidades numé
 que se man
el caso de nu

Of la cual co
atos de los c

nción getText

Cla
Desarrollo

e será capaz d
el desarrollo
os para el tra
ado de salida

s graficas en
de los contro
nto y como s
cer métodos
ismos.

e.
er para la cre
pliquemos un

cha interfase
es:
tener los con
Field).

ren necesario

el evento n
an sumar los
ma correcta y
es el siguient
éricas. Enton
ndan con los
estra aplicac
nvierte los d
controles y c
t y setText,

ase Nº 5
o de Inte

de:
de interfaces

abajo con inte
as en los proc

 importante i
oles y la di

se comportan
(en el caso d

eación de una
n ejemplo bá

e?

ntroles (JFram

os (JLabel).

necesario y
s 2 valores.
y evitar error
te, los contro
nces para po
s controles us
ción son ente
datos a núm
omo enviare
 y ahora es n

T

erfaces.

s.
erfaces grafic
cesos de un p

identificar las
sposición de
 ya estando e

de los control

a interfase es
sico una inte

me).

en el contr
 Tomamos e
res a la hora
oles únicame
oder realizar
samos la fun
res entonces

meros enteros
mos resultad

necesario, con

Tec. En Ingeni

cas.
programa.

s partes fund
e los mismo
en funcionam
les) para el a

s saber, cual
erfase para l

rol adecuado
en considera
de correr nue
nte trabajan
r la operació
nción de acu
 usamos la C
s, otro aspec
dos hacia un
nvertir el tota

ería en Sistem

Página 4

damentales q
os, los event
miento.
acceso de dat

es la necesid
a suma de d

o, las accion
ción aspect
estra aplicaci
 con caracter

ón debemos
erdo al tipo

Clase Intege
cto es el com
 control esto
al pero al igu

mas

44.

que
tos

tos

dad
dos

nes
tos
ión
res
de
de
r y
mo
 lo
ual

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 45.

que al capturar los datos tenemos que convertir el valor por que el resultado devuelto es un tipo
de dato numerico y los controles solo aceptan texto ¿Cómo haremos para convertirlo?.

 El código es el siguiente es.
private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
int total,val1,val2;
val1=Integer.valueOf(jTextField1.getText());
val2=Integer.valueOf(jTextField2.getText());
total=val1+val2;
jLabel5.setText(String.valueOf(total));

}

Ahora nos toca complementar nuestro código manejando excepciones y algunos errores que
puedan ocasionarse agregamos el manejador de eventos y nuestro código final queda de la
forma siguiente.

private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
int total,val1,val2;
 try{
 val1=Integer.valueOf(jTextField1.getText());
 val2=Integer.valueOf(jTextField2.getText());
 total=val1+val2;
 jLabel5.setForeground(new java.awt.Color(0, 0, 0));
 jLabel5.setText(String.valueOf(total));
 }catch(Exception e){
 jLabel5.setForeground(new java.awt.Color(255, 0, 51));
 jLabel5.setText("Error"+e.getMessage());
 }
}

Donde se verifica si introduce algún valor que no corresponde al proceso para operar los datos y
se enviara un mensaje el se muestra en un Jlabel que es el elemento que procesara en este caso
las salidas.

Eventos
Cuando estamos trabajando GUI’s el reconocer como se comporta nuestro código es importante
por ello se debe de identificar claramente los eventos asociados a ello ya que Java al estar
orientado a eventos no provee la facilidad de la creación o trabajo con los ya que no existe una
instrucción o método que controle los eventos, se debe de haber creado desde cero. En el caso
del uso de un IDE se nos facilita el trabajo ya que ya están creadas plantillas con los códigos
para el uso de los eventos, donde solo debemos agregar las acciones (similar a la programación
en VB.NET).

Como se comporta un evento en java.
Un evento de Java se implementa de la siguiente forma: • librería AWT (import java.awt.event). • un listener (es el objeto que captura el evento, además son clases auxiliares). • Un método asociado al listener para definir las instrucciones que se ejecutaran cuando

dicho evento se desencadene.

Ejemplo Método que realiza “X” accion
private void jButton1MouseClicked(java.awt.event.MouseEvent evt) {
jLabel1.setText("Hola Mundo");
}

Listener del control .
jButton1.addMouseListener(new java.awt.event.MouseAdapter() {

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 46.

 public void mouseClicked(java.awt.event.MouseEvent evt) {
 jButton1MouseClicked(evt);
 }
 });

La parte de los desencadenadores de eventos o los listener es algo que se debe de tomar en
cuenta ya que ellos son los que permiten la manipulación de todas las acciones que se puedan
dar en una aplicación GUI, en Swing se genera un variado set de eventos, en la siguiente tabla
se resumen los más comunes con sus respectivos "escuchadores".

Ejemplos de eventos y sus escuchadores
Acción que gatilla un evento Tipo de escuchador
El usuario hace un click, presiona Return
en un área de texto o selecciona un menú

ActionListener

El usuario escoge un frame (ventana principal) WindowListener
El usuario hace un clic sobre una componente MouseListener
El usuario pasa el mouse sobre una componente MouseMotionListener
Una componente se hace visible ComponentListener
Una componente adquiere el foco del teclado FocusListener
Cambia la selección en una lista o tabla ListSelectionListener

El modelo de creación de interfaces de java es un modelo un tanto complejo por la
implementación de diferentes clases para la manipulación de los controles pero el resultado que
se obtiene depende de planear previamente que elementos poseerá nuestra GUI además de los
eventos importantes y que salidas manipularemos al tomar en cuenta estos 3 aspectos se nos
facilitara en gran medida el proceso de desarrollo además de tener una herramienta adecuada
para facilitar la codificación.
Tarea.

• Investigar que funciones me permite cambiar el aspecto de un control (color de fondo,
color de letra, tamaño etc.). • Realice un boceto de creación de una GUI de Java, tomando en cuenta los controles que
utilizara, los eventos necesarios, los métodos que se asociaran a los diferentes eventos y
los datos que manipulara cada control.

Aplicac

OBJET

Al final

PROC

Ya que
nos fa
matem
realiza

Esta e
para e
operac
Entonc

 privat
val1=D
val2=D
 total
 jLabe

}

private
 tota
 jLa
}

private

iones Cliente S

TIVOS

lizar la Práctic
• Cre• Cre

EDIMIENTO

e conocemos
acilitara la c

máticas (oper
r un boceto o

s el ejemplo
el formulario
ción definida t
ces el código

e void jRadio
Double.valueO
Double.valueO
=val1+val2;

el3.setText(St

e void jRadioB
al=val1*val2;
bel3.setText(

e void jRadioB

Servidor

D

ca, el estudia
ar GUI en Ja
ar Métodos p

 las ventajas
creación de
raciones arit
o planeación
o 2 cajas d
o Checkbo
o Labels n
o Un contr

o del formula
 es que al d
tomando.
 quedara de l

oButton1Mous
Of(jTextField
Of(jTextField

tring.valueOf

Button3Mous
;
(String.value

Button2Mous

 Guía P
Desarrollo

nte será capa
va.

para la manip

s y caracterís
una pequeñ

tméticas bás
 previa de lo
de texto.
ox para cada
necesarios.
rol Button Gr

rio con los c
ar clic sobre

a siguiente fo

seClicked(jav
1.getText());
2.getText());

f(total));

seClicked(java

Of(total));

seClicked(java

Práctica N
o de Inte

az de:

pulación de da

sticas que Ne
ña aplicación
sicas, raíces
que necesita

 operación.

roup.

controles ya
e cualquiera

orma.

va.awt.event.
;
;

a.awt.event.M

a.awt.event.M

T

No 5
erfaces.

atos de las G

etBeans prove
n del cálcul
cuadradas,

mos definirem

posicionados
de los boton

.MouseEvent

MouseEvent e

MouseEvent e

Tec. En Ingeni

GUI.

ee para la cr
o de alguna
potencias);

mos lo siguie

s, la lógica q
nes de radio

 evt) {

evt) {

evt) {

ería en Sistem

Página 4

reación de GU
as operacion
lo primero

ente.

que definirem
 se realizara

mas

47.

UI,
nes
es

mos
 la

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 48.

 total=val1-val2;
 jLabel3.setText(String.valueOf(total));
}

private void jRadioButton4MouseClicked(java.awt.event.MouseEvent evt) {
 total=val1/val2;
 jLabel3.setText(String.valueOf(total));
}

private void jRadioButton5MouseClicked(java.awt.event.MouseEvent evt) {
 total=Math.sqrt(val1);
 jLabel3.setText(String.valueOf(total));
}

private void jRadioButton6MouseClicked(java.awt.event.MouseEvent evt) {
 total=Math.pow(val1,val2);
 jLabel3.setText(String.valueOf(total));
}

Hay que tomar algo muy en cuenta por que se usa un control radio group y por que no aparece
nuestra interfase este control se utiliza para asociar todos los radio buton para que se activen o
se desactiven al dar clic sobre ellos o sea para que dos radios no estén seleccionados a la vez.

Para asociar los radios a este control lo que haremos es asociar la propiedad buttonGroup en la
paleta de propiedades para cada radio que tengamos en nuestro formulario.
Con los códigos y ejemplos definidos podremos crear interfaces dependiendo de la complejidad
debemos de ser mas cuidadosos a la hora de plantear que es lo que necesitaremos desarrollar.

Ejercicios. • Con el ejemplo creado validad todas las entradas de las cajas de texto y enviar los

mensajes necesarios(errores, excepciones) • Modificar el ejemplo de la clase para operar por medio de botones.

Aplicac

OBJET

Al final•

DESAR

INTRO

Java S
forma
dentro
enviarl
de des
de clas
de la p

La dife
abstrac
compil
los sím
momen

Un ser
mantie
Servlet
rápido
levanta
crear u

Como
es una

Plantill
consist
HTML
través"
norma
ejempl

La úni
querem

ELEME
 JSP L
genera
Expres
Scriptl
dentro
inserta
cualqu
Expre

iones Cliente S

TIVOS

lizar la clase,
Conocer la T

RROLLO

DUCCION A J

Server Pages
de agregar
 del archivo
los al cliente.
sarrollo ya qu
ses especiale
programación

erencia entre
cta HttpServ
ados, mientr

mbolos <%
nto de la pet

rvidor Web pa
ene una Java
ts. El tiempo
 tiempo de
ar un proceso
un proceso pe

 se puede d
 forma distin

a de Texto:
tirá en HTML
se parece al
" del cliente
l, puede ser
lo, podríamos

ca excepción
mos tener "<

ENTOS DE S
Los elemento
ará desde la p
siones de la
ets de la form
 del método

an en el cuerp
ier método e

esiones JSP

Servidor

Intro

el estudiante
ecnología JSP

JSP.

 (JSP) Es un
contenido d

 utilizando ta
. La posibilida

ue se obtiene
s llamadas co

n en Java, etc

 Servlets y JS
vlet, en espe
ras que los ar
y %>. Por
ición por part

ara Servlets y
a Virtual Ma
 que demora
respuesta po
o liviano o th
esado como u

educir de es
nta y más fác

HTML estátic
L estático, co
l HTML norm
por el servle
creado con c
s utilizar Hom

n a la regla d
%" en la sali

CRIPT
os de script
página JSP ac
 forma <%=
ma <% códig
o service del
po de la clase
existente.

Cla
oducción

e será capaz d
P, su uso y mé

na tecnología
inámico a u

ags especiale
ad de usar A
 la ventaja de
omponentes
c.

SP es que los
ecial el méto
rchivos JSP co
esto un arc
te del usuario

y JSP como J
achine en eje
 en la compil
osterior ya q
read dentro d
un intérprete

sto, en realida
il para crear

coEn muchos
onocido como

mal, sigue la
t creado para

cualquier herr
mesite de Alla

de que "la p
da, necesitam

nos permite
ctual. Hay tre
= expresión
go %> que se
 servlet, y D
e del servlet,

ase Nº 6
 a la Tecn

de:
étodos de prog

a similar a lo
n archivo HT
s que son pr

APIs de Java h
e la program
o Java Beans

s Servlets son
odo doGet()
ontienen cód

chivo JSP de
o.

Jakarta Tomc
ecución para
ación inicial d

que para pro
de la misma
 de Perl para

ad la tecnolo
Servlets.

s casos, un g
o plantilla de
 mismas reg
a manejar la
ramienta que
aire o Microso

plantilla de te
mos poner "<

en insertar c
es formas:
%> que son

e insertan
Declaraciones
 fuera de

T

nología JS

gramación

os Servlets q
TML por utili
rocesados po
hacen de JSP
ación orienta
s, independen

n clases que
 o doPost()
igo Java entr

ebe ser inter

cat es una ap
a compilar lo
de un JSP es
ocesar un re
JVM para eje

a programas C

gía JSP en sí

gran porcenta
e texto. En c
las de sintax
 página. No s

e usemos par
oft Frontpage

exto se pasa
<\%" en la pl

código Java

n evaluadas

s de la form

Tec. En Ingeni

SP

que ofrece un
izar código e
or el servidor
P una podero
ada al objeto,
ncia de la pla

deben imple
 y deben se
re código HTM
rpretado por

plicación escr
os archivos
 contrarresta
querimiento

ecutar un arc
CGI.

 no es nueva

aje de nuestr
casi todos lo
xis, y simple
sólo el aspec
ra generar pá
e.

a tal y como
antilla de tex

dentro del

 e insertada

ma <%! códig

ería en Sistem

Página 4

na convenien
escrito en Ja
r Web antes
osa herramien
, como creaci
ataforma prop

mentar la cla
er previamen
ML utilizando
 el servidor

ita en Java q
JSP y ejecut
do por su
sólo tiene q
hivo .class y

, si no que só

ras páginas J
 aspectos, es

emente "pasa
cto del HTML
áginas Web. P

 es" es que,
xto.

servlet que

s en la salid

go %> que

mas

49.

nte
ava
de

nta
ión
pia

ase
nte

 al

que
tar

que
 no

ólo

JSP
ste
a a
 es
Por

 si

se

da.

se

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 50.

Una expresión JSP se usa para insertar valores Java directamente en la salida. Tiene la siguiente
forma:

<%= expresión Java %>
La expresión Java es evaluada, convertida a un string, e insertada en la página. Esta evaluación
se ejecuta durante la ejecución (cuando se solicita la página) y así tiene total acceso a la
información sobre la solicitud. Por ejemplo, esto muestra la fecha y hora en que se solicitó la
página:

Current time: <%= new java.util.Date() %>
Para simplificar estas expresiones, hay un gran número de variables predefinidas que podemos
usar. Estos objetos implícitos se describen más adelante con más detalle, pero para el propósito
de las expresiones, los más importantes son:

1. request, el HttpServletRequest;

2. response, el HttpServletResponse;

3. session, el HttpSession asociado con el request (si existe), y

4. out, el PrintWriter (una versión con buffer del tipo JspWriter) usada para enviar la
salida al cliente.

Aquí tenemos un ejemplo:

Tu Servidor es: <%= request.getRemoteHost() %>

Scriptlets JSP

Si queremos hacer algo más complejo que insertar una simple expresión, los scriptlets JSP nos
permiten insertar código arbitrario dentro del método servlet que será construido al generar la
página. Los Scriptlets tienen la siguiente forma:

<% Código Java %>
Los Scriptlets tienen acceso a las mismas variables predefinidas que las expresiones. Por eso,
por ejemplo, si queremos que la salida aparezca en la página resultante, tenemos que usar la
variable out:

<%
String queryData = request.getQueryString();
out.println("Datos Adjuntos al método GET: " + queryData);
%>
Observa que el código dentro de un scriptlet se insertará exactamente como está escrito, y
cualquier HTML estático (plantilla de texto) anterior o posterior al scriptlet se convierte en
sentencias print. Esto significa que los scriptlets no necesitan completar las sentencias Java, y
los bloques abiertos pueden afectar al HTML estático fuera de los scriplets. Por ejemplo, el
siguiente fragmento JSP, contiene una mezcla de texto y scritplets:

<% if (Math.random() < 0.5) { %>
Tendrás un Buen día!
<% } else { %>
Tendrás un Mal día!
<% } %>
El ejemplo anterior se convertirá en algo como esto:

if (Math.random() < 0.5) {
out.println("Tendrás un Buen día!");

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 51.

} else {
out.println("Tendrás un Mal día!");
}

Declaraciones JSP

Una declaración JSP nos permite definir métodos o campos que serán insertados dentro del
cuerpo principal de la clase servlet (fuera del método service que procesa la petición). Tienen la
siguiente forma:

<%! Código Java%>

Como las declaraciones no generan ninguna salida, normalmente se usan en conjunción con
expresiones JSP o escriptlets. Por ejemplo, aquí tenemos un fragmento de JSP que imprime el
número de veces que se ha solicitado la página actual desde que el servidor se arrancó (o la
clase del servlet se modificó o se recargó):

<%! private int accessCount = 0; %>
Accesos a la Página desde que el Servidor Inició:
<%= ++accessCount %>

Directivas JSP

Una directiva JSP afecta a la estructura general de la clase servlet. Normalmente tienen la
siguiente forma:

<%@ directive attribute="value" %>

Sin embargo, también podemos combinar múltiples selecciones de atributos para una sola
directiva, de esta forma:

<%@ directive attribute1="value1"
attribute2="value2"
...
attributeN="valueN" %>

Hay dos tipos principales de directivas: page, que nos permite hacer cosas como importar
clases, personalizar la superclase del servlet, etc. einclude, que nos permite insertar un fichero
dentro de la clase servlet en el momento que el fichero JSP es traducido a un servlet.

La directiva page

 La directiva page nos permite definir uno o más de los siguientes atributos sensibles a las
mayúsculas:

import="package.class" o import="package.class1,...,package.classN".

Esto nos permite especificar los paquetes que deberían ser importados. Por ejemplo:

<%@ page import="java.util.*" %>

El atributo import es el único que puede aparecer múltiples veces.

contentType="MIME-Type"

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 52.

Esto especifica el tipo MIME de la salida. El valor por defecto es text/html. Por ejemplo, la
directiva:

<%@ page contentType="text/plain" %>

tiene el mismo valor que el scriptlet

<% response.setContentType("text/plain"); %>

Ejemplo1.jsp
<HTML><HEAD><TITLE>Utilizando Java Server Pages</TITLE></HEAD>
<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE"
VLINK="#551A8B" ALINK="#FF0000">
<CENTER>
<TABLE BORDER=5 BGCOLOR="#EF8429">
<TR><TH CLASS="TITLE">
Utilizando Java Server Pages</TABLE>
</CENTER>
<P>
Algunos Contenidos Dinámicos utilizando mecanismos de JSP:

Expresión.

Tu Servidor es: <%= request.getRemoteHost() %>.
Un Scriptlet.

<% out.println("Parámetros Adjuntos al Método GET: " +
request.getQueryString()); %>
Declaración.

<%! public int CUENTA = 0; %>
Número de Accesos a esta Página desde que inició Servidor: <%= ++CUENTA %>
Directiva.

<%@ page import = "java.util.*" %>
Current date: <%= new Date() %>

</BODY>
</HTML>

La directiva include JSP

Esta directiva nos permite incluir ficheros en el momento en que la página JSP es traducida a un
servlet. La directiva se parece a esto:

<%@ include file = "url relativa" %>

La URL especificada normalmente se interpreta como relativa a la página JSP a la que se refiere,
pero, al igual que las URLs relativas en general, podemos decirle al sistema que interpreta la
URL relativa al directorio home del servidor Web empezando la URL con una barra invertida. Los
contenidos del fichero incluido son analizados como texto normal JSP, y así pueden incluir HTML
estático, elementos de script, directivas y acciones.

Por ejemplo, muchas sites incluyen una pequeña barra de navegación en cada página. Debido a
los problemas con los marcos HTML, esto normalmente se implementa mediante una pequeña
tabla que cruza la parte superior de la página o el lado izquierdo, con el HTML repetido para
cada página de la site. La directiva include es una forma natural de hacer esto, ahorrando a los
desarrolladores el mantenimiento engorroso de copiar realmente el HTML en cada fichero
separado. Aquí tenemos un código representativo:

<HTML>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 53.

<HEAD>
<TITLE>Ejemplo de JavaServer Pages Utilizando Include</TITLE>
</HEAD>
<BODY>
<%@ include file="Otroejemplo.jsp" %>
</BODY>
</HTML>

Variables Predefinidas

Para simplificar el código en expresiones y scriplets JSP, tenemos ocho variables definidas
automáticamente, algunas veces llamadas objetos implícitos. Las variables disponibles son:
request, response, out, session, application, config, pageContext, y page. A continuación una
descripción de aquellas más utilizadas:

· request

Este es el HttpServletRequest asociado con la petición, y nos permite mirar los parámetros de la
petición (mediante getParameter), el tipo de petición (GET, POST, HEAD, etc.), y las cabeceras
HTTP entrantes (cookies, Referer, etc.).

· response

Este es el HttpServletResponse asociado con la respuesta al cliente. Observa que, como el
stream de salida (ver out más abajo) tiene un buffer, es legal seleccionar los códigos de estado
y cabeceras de respuesta, aunque no está permitido en los servlets normales una vez
que la salida ha sido enviada al cliente.

· out

Este es el PrintWriter usado para enviar la salida al cliente. Sin embargo, para poder hacer útil el
objeto response (ver la sección anterior), esta es una versión con buffer de PrintWriter llamada
JspWriter.

Ejemplo:

FormularioSimple.html
<HTML><head><title>Ejemplo Utilizando JSP</title></head>
<BODY><CENTER> </CENTER>
<h1 align="center">Ejemplo Utilizando JSP</h1>
<h3 align="center">Programación IV</h3>
<hr>
<p>
<H3>Por Favor, Introduzca la siguiente Información</H3>
<FORM action="RecuperaDatos.jsp" method="get">
Nombre y Apellido: <INPUT type="text" name="Nombre" size="20">
<INPUT type="text" name="Apellido" size="20">

Sexo: <INPUT type="radio" checked name="sexo" value="Masculino">Masculino
<INPUT type="radio" name="sexo" value="Femenino">Femenino
<INPUT type="radio" name="sexo" value="Alienígena">Alienígena

<P>
¿Cual es tu lenguaje de Programación favorito?:
<SELECT name="Lenguaje">
<option>Visual Basic</option>
<option>Visual FoxPro</option>
<option>Visual C</option>
<option>Delphi</option>
<option>Java</option>
<option>Power Builder</option>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 54.

<option>Otro</option>
</SELECT>

Los datos del formulario anterior, son enviados al siguiente archivo jsp:

RecuperaDatos.jsp
<HTML><HTML><head><title>Resultado del Ejemplo JSP</title></head>
<BODY>
<CENTER> </CENTER>
<h1 align="center">Resultado del Ejemplo JSP</h1>
<hr>
<%
// Recuperando las variables del formulario
String Nombre = request.getParameter("Nombre");
String Apellido = request.getParameter("Apellido");
String sexo = request.getParameter("sexo");
String Lenguaje = request.getParameter("Lenguaje");
%>
<%-- Imprimiendo las variables --%>
<H2>Saludos, <%=Nombre%> <%=Apellido%>!</H2>
Tu Sexo es <i><%=sexo%></i>. Tu lenguaje de Programación Preferido es:
<%=Lenguaje%>, Excelente Elección.
</BODY></HTML>

Aplicac

OBJET

Al fina• •

• •

PROC

¿Qué e

Java S
genera
casi e
variaci
nuestr
crear d

Ejemp
<HTML
<h1>E
<%
// Este
out.pri
"ESTA
%></

¿Cuále

· Cont

ASP es
parte d
es mu
servido

· Cont

JSP no
conven
println
diferen
constru
dinámi

· Cont

SSI es
de una

iones Cliente S

TIVOS

lizar la Prácti
Utilizar el L
Verificar las
Web, incl
Utilizar Exp
Utilizar Dire

EDIMIENTO

es JSP?

Server Pages
ado dinámica
estáticas, con
ones CGI, in
o programa,
dos partes de

loSencillo.jsp
L><head><t
Ejemplo Senc

e es un come
ntln("<MARQ
 MARQUESIN
BODY></HTM

es son las Ven

tra Active S

s una tecnolo
dinámica está
cho más pod
ores Web

tra los Serv

o nos da nad
niente escrib
 que genere

ntes persona
uir el HTML, d
ico.

tra Server-S

 una tecnolog
a página Web

Servidor

Introd

ca, el estudia
Lenguaje de J
s ventajas qu
uyendo los m

presiones de J
ectivas de JS

 (JSP) es un
mente. Much
n la parte
ncluyendo los
 incluso aun

e forma separ

p
title>JSP mis
cillo de JSP <

ntario
QUEE>FINALI
A ESTA HECH
ML>

ntajas de JSP

Server Pages

ogía similar
á escrita en J
derosa y fác

vlets.

a que no pu
ir (y modific
en HTML. A

as en diferen
dejando espa

Side Include

gía ampliame
b estática. JSP

Guía P
ducción a

ante será cap
ava Servlets

ue ofrece JSP
mismos Servl
Java en los ll
P en las aplic

na tecnología
has páginas
dinámica lim
s servlets, h
que la mayo
rada. Aquí te

 inicios</title
h1><hr><B

IZANDO LAS
HA CON JSP<

P?

s (ASP).

de Microsoft
Java, no en V
il de usar. S

diéramos en
car!) HTML n
Además, sep
ntes tareas:
acio para que

es (SSI).

ente soportad
P es mejor

Práctica N
a Java Se

paz de:
 para crear Ja
 sobre los len
ets.
amados Scrip
caciones para

 que nos pe
Web que est

mitada a mu
hacen que ge
oría de ella s
nemos un eje

e><head>
ODY><P>

 CLASES DE P
</MARQUEE>

. Las ventaja
Visual Basic,
Segundo, es

 principio ha
ormal que te
arando el fo
 los experto
e los program

da que incluy

T

No 6
erver Pag

ava Server P
nguajes de pr

ptles.
a el Web.

ermite mezcla
tán construid
uy pocas lo
eneremos la
sea siempre
emplo:

PROGRAMAC
>");

as de JSP es
 otro lenguaj
portable a o

cer con un s
ener que hac
ormato del
os en diseño
madores de se

e piezas defi

Tec. En Ingeni

ges

ages.
rogramación

ar HTML está
das con prog
ocalizaciones.
 página com
lo mismo. JS

ION IV, "+

stan duplicad
e específico

otros sistema

servlet. Pero
cer un billón
contenido p

o de páginas
ervlets insert

nidas externa

ería en Sistem

Página 5

 orientados a

ático con HT
ramas CGI s
 Pero much
pleta median
SP nos perm

das. Primero,
de MS, por e
as operativos

 es mucho m
n de sentenc
podemos pon
s Web pued
en el conteni

amente dentr

mas

55.

l

ML
son
has
nte

mite

 la
eso
s y

más
ias
ner
den
ido

ro

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 56.

porque nos permite usar servlets en vez de un programa separado para generar las partes
dinámicas. Además, SSI, realmente está diseñado para inclusiones sencillas, no para programas
"reales" que usen formularios de datos, hagan conexiones a bases de datos, etc.

· Contra JavaScript.

JavaScript puede generar HTML dinámicamente en el cliente. Este una capacidad útil, pero sólo maneja
situaciones donde la información dinámica está basada en el entorno del cliente. Con la excepción de
las cookies, el HTTP y el envió de formularios no están disponibles con JavaScript. Y, como se ejecuta
en el cliente, JavaScript no puede acceder a los recursos en el lado del servidor, como bases de datos,
catálogos, información de precios, etc.

Normalmente daremos a nuestro fichero una extensión .jsp, y normalmente lo instalaremos en el mismo
sitio que una página Web normal.

Aunque lo que escribamos frecuentemente se parezca a un fichero HTML normal en vez de un servlet,
detrás de la escena, la página JSP se convierte en un servlet normal, donde el HTML estático
simplemente se imprime en el stream de salida estándar asociado con el método service del servlet.
Esto normalmente sólo se hace la primera vez que se solicita la página, y los desarrolladores pueden
solicitar la página ellos mismos cuando la instalan si quieren estar seguros de que el primer usuario real
no tenga un retardo momentáneo cuando la página JSP sea traducida a un servlet y el servlet sea
compilado y cargado. Observa también, que muchos servidores Web nos permiten definir alias para que
una URL que parece apuntar a un fichero HTML realmente apunte a un servlet o a una página JSP.

Además del HTML normal, hay tres tipos de construcciones JSP que embeberemos en una página:
elementos de script, directivas y acciones.
Los elementos de script nos permiten especificar código Java que se convertirá en parte del servlet
resultante, las directivas nos permiten controlar la estructura general del servlet, y las acciones nos
permiten especificar componentes que deberían ser usados, y de otro modo controlar el comportamiento
del motor JSP. Para simplificar los elementos de script, tenemos acceso a un número de variables
predefinidas como request, response y out. Ejemplo:

Fomulario.html
<HTML>
<BODY bgcolor="#B9E3FF">
<H1>Por favor, Introduzca un listado de Nombre</H1>
<FORM action="MultiParametros.jsp" method="get">
<INPUT type="text" name="nonmbre" size="20">

<INPUT type="text" name="nombres" size="20">

<INPUT type="text" name="nombres" size="20">

<INPUT type="text" name="nombres" size="20">

<INPUT type="text" name="nombres" size="20"><p>

<INPUT type="submit"> </p>
</FORM>
</BODY>
</HTML>
MultiParametros.jsp
<HTML>
<BODY bgcolor="#B9E3FF">
Los nombres introducidos son:
<hr>
<PRE>
<%
// Obteniendo los valores de los nombres
String arraynombres[] = request.getParameterValues("nombres");
out.println("<Lo>");

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 57.

for (int i=0; i < arraynombres.length; i++)
{
out.println("<i>"+arraynombres[i]);
}
out.println("</Lo>");
%>
</PRE>
</BODY>
</HTML>

El siguiente archivo .jsp Crea un formulario y se auto-envía los parámetros que son evaluados por el
mismo archivo jsp, ya que algunos de estos son obligatorios que el usuario los introduzca.

CamposRequeridos.jsp
<HTML>
<BODY>
<%
 String Nombre = request.getParameter("nombre");
 if (Nombre == null) Nombre = "";
 String Apellido = request.getParameter("apellido");
 if (Apellido == null) Apellido = "";
 String Direccion = request.getParameter("direccion");
 if (Direccion == null) Direccion = "";
 String Ciudad = request.getParameter("ciudad");
 if (Ciudad == null) Ciudad = "";
 String Departamento = request.getParameter("departamento");
 if (Departamento == null) Departamento = "";
 String Telefono = request.getParameter("telefono");
 if (Telefono == null) Telefono = "";
 String formatOption = request.getParameter("formatoption");
 if (formatOption == null) formatOption = "";
 // Algunos de los parametros son requeridos,Damos un estilo
 // por defecto para estos datos"requeridos"
 String NombreColorRequerido = "black";
 String ApellidoColorRequerido = "black";
 String TelefonoColorRequerido = "black";
 String ColorNotificarRequerido = "red";
 // Cuando esta pagina es ejecutada, Realiza una petición HTTP GET

 // Pero en la opción METHOD del tag FORM, El formulario
 // Envia los datos por HTTP POST.
 // Cuando el boton submit es presionado…

if (request.getMethod().equals("POST"))
 {

 boolean CamposRequeridosPresentes = true;
 // Verificamos si los campos requeridos estan en blanco
 if (Nombre.length() == 0)
{
 NombreColorRequerido = ColorNotificarRequerido;
 CamposRequeridosPresentes = false;
}
 if (Apellido.length() == 0)
{
 ApellidoColorRequerido = ColorNotificarRequerido;
 CamposRequeridosPresentes = false;
}
 if (Telefono.length() == 0)
{

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 58.

TelefonoColorRequerido = ColorNotificarRequerido;
CamposRequeridosPresentes = false;
}
// Si el usuario no introdujo los campos requeridos, digamosle que estan
// marcados en un color diferente.
if (!CamposRequeridosPresentes)
{
%>
Usted No ha introducido todos los campos requeridos.
 Debe introducir
todos los campos que estan marcados en color <font color="<%=ColorNotificarRequerido%>">
Rojo.
<%
}
else
{
// Desplegar el nombre y Dirección que ha sido introducida
String nameString = Nombre+" "+Apellido+
"
"+ Direccion+"
"+Ciudad+", "+
Departamento+".
 Teléfono: "+Telefono;
out.println("El Registro Actual es:<P>");
if (formatOption.equals("Negrita"))
{
out.println(""+nameString+"");
}
else if (formatOption.equals("Cursiva"))
{
out.println("<I>"+nameString+"</I>");
}
else
{
out.println(nameString);
}
out.println("<P>");
}
}
%>
<FORM action="CamposRequeridos.jsp" method="POST">
<TABLE>
<TR><TD>Nombre:<TD><INPUT type="text" name="nombre" value="<%=Nombre%>">
<TD><FONT color="<%=NombreColorRequerido%>">requerido
<TR><TD>Apellido:<TD><INPUT type="text" name="apellido" value="<%=Apellido%>">
<TD><FONT color="<%=ApellidoColorRequerido%>">requerido
<TR><TD>Dirección:<TD><textarea rows="4" name="direccion" cols="26"><%=Direccion%></textarea>
<TR><TD>Ciudad<TD><INPUT type="text" name="ciudad" value="<%=Ciudad%>">
<TR><TD>Departamento:<TD><INPUT type="text" name="departamento"
value="<%=Departamento%>">
<TR><TD>Teléfono de Contacto:<TD><INPUT type="text" name="telefono" value="<%=Telefono%>">
<TD><FONT color="<%=TelefonoColorRequerido%>">requerido
</TABLE>
<P>
Opciones de Formato:

<SELECT name="formatoption">
<OPTION value="Normal">Normal</OPTION>
<OPTION value="Negrita">Negrita</OPTION>
<OPTION value="Cursiva">Cursiva</OPTION>
</SELECT>
<P>
<INPUT type="submit" value="Hacer Clic Aquí">
</FORM>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 59.

</BODY>
</HTML>

DIRECTIVAS JSP

¿Qué es la Directiva Include?

La directiva include se usa para insertar un fichero dentro de una página JSP cuando se compila la
página JSP. El texto del fichero incluido se añade a la página.

¿Qué clases de ficheros se pueden incluir?

El fichero incluido puede ser un fichero JSP, un fichero HTML, o un fichero de texto. También ser un
fichero de código escrito en lenguaje Java.

Hay que ser cuidadoso en que el fichero incluido no contenga las etiquetas <html>, </html>, <body>, or
</body>. Porque como todo el contenido del fichero incluido se añade en esa localización del fichero
JSP, estas etiquetas podrían entrar en conflicto con las etiquetas similares del fichero JSP.

Incluir Ficheros JSP

Si el fichero incluido es un fichero JSP, las etiquetas JSP son analizadas y sus resultados se incluyen
(junto con cualquier otro texto) en el fichero JSP.

Sólo podemos incluir ficheros estáticos. Esto significa que el resultado analizado del fichero incluido se
añade al fichero JSP justo donde está situada la directiva. Una vez que el fichero incluido es analizado y
añadido, el proceso continúa con la siguiente línea del fichero JSP llamante.

¿Qué es un fichero Estático?

Un include estático significa que el texto del fichero incluido se añade al fichero JSP. Además en
conjunción con otra etiqueta JSP, <jsp:include>: podemos incluir ficheros estáticos o dinámicos:
 • Un fichero estático es analizado y si contenido se incluye en la página JSP llamante. • Un fichero dinámico actúa sobre la solicitud y envía de vuelta un resultado que es incluido en la
página JSP.

¿Cuál es la Sintaxis para Incluir un Fichero?

Podemos incluir un fichero en la localización específica del fichero JSP usando la directiva include con la
siguiente síntasis:

"<%@ include file="URL" %>

Aquí la URL puede ser una URL relativa indicando la posición del fichero a incluir dentro del servidor.

Acción jsp:include

Esta acción nos permite insertar ficheros en una página que está siendo generada. La síntaxis se
parece a esto:

<jsp:include page="relative URL" flush="true" />

Al contrario que la directiva include, que inserta el fichero en el momento de la conversión de la página
JSP a un Servlet, esta acción inserta el fichero en el momento en que la página es solicitada. Esto se
paga un poco en la eficiencia, e imposibilita a la página incluida de contener código JSP general (no
puede seleccionar cabeceras HTTP, por ejemplo), pero se obtiene una significante flexibilidad. Por
ejemplo, aquí tenemos una página JSP que inserta cuatro puntos diferentes dentro de una página Web

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 60.

"Noticias de Ultima Hora?". Cada vez que cambian las líneas de cabeceras, los autores sólo tienen que
actualizar los cuatro ficheros, pero pueden dejar como estaba la página JSP principal.

Noticias.jsp
<HTML>
<HEAD>
<TITLE>Noticias Frescas</TITLE>
</HEAD>
<BODY BGCOLOR="#FDF5E6" TEXT="#000000" LINK="#0000EE"
VLINK="#551A8B" ALINK="#FF0000">
<CENTER>
<TABLE BORDER=5 BGCOLOR="#EF8429">
<TR><TH CLASS="TITLE">
Ultimas Noticias en t JspNoticias.com</TABLE>
</CENTER>
<P>
Este es un Resumen de las Noticias Más Recientes:

<jsp:include page="noticias/Item1.html" flush="true"/>
<jsp:include page="noticias/Item2.html" flush="true"/>
<jsp:include page="noticias/Item3.html" flush="true"/>
<jsp:include page="noticias/Item4.html" flush="true"/>

</BODY>
</HTML>

Para que este archivo pueda ejecutarse, debe crear en un directorio virtual llamando “noticias” los
archivos item1, item2, item3, item4 con extensión HTML o puede acceder a cualquier archivo de texto
cambiando el valor del atributo page de Noticias.jsp.

EJERCICIOS PROPUESTOS

1. Crear un formulario que pida Nombre, Apellido, Dirección, Teléfono, Dirección de Email, Fecha de
Nacimiento, Pasatiempos Favoritos. Estos serán leídos por un archivo JSP, que desplegará los
parámetros recibidos (utilizar método POST).

2. Crear una pagina JSP, donde puedas incluir en una tabla, el contenido de cuatro archivos HTML, uno
en cada celda, como se muestra en la figura.

Archivo1.html Archivo2.html

Archivo3.html Archivo4.html

3. Realizar el ejercicio #2 de la guía practica 8 utilizando JSP, el enunciado es el siguiente:

Crear un formulario en HTML que simule la pantalla de acceso a una aplicación Web con acceso
restringido, el formulario pedirá al usuario: Su nombre de Usuario y Contraseña (el formulario debe estar
validado de tal forma que obligue al usuario a escribir los datos requeridos). Estos datos serán enviados
a una pagina JSP que validará la entrada a la aplicación. Esta contendrá 2 arreglos uno de
Usuarios y otro de Contraseñas, de tal forma que Usuario[2] poseerá su clave en contraseña[2]. Si el
usuario y contraseña son validos la página mostrará un mensaje de bienvenida al usuario, de lo
contrario desplegará un mensaje de Usuario y/o contraseña no validos.
Tomar como datos de los arreglos:
 • USUARIO {Administrador, Usuario1, Usu02, Operador} • PASSWORD {admin0101, nimodo, clave02, ok}

Aplicac

OBJET

Al fina•

DESAR

JSP CO

Mover

Una de
hoja d
permit
resulta
navega
caracte

Antes d

Statem
 Res
ResultS

Este c
método
Result
TYPE_
de las
actuali
es que
Tambié
no com

Especif
despla
especif
autom

Obtend
consta
estas d
abierta
hablan
mientr
de hoj
momen
Result
hecho
limitad

iones Cliente S

TIVOS

alizar la clas
Conocer asp

RROLLO

ON BASES D

r el Cursor e

e las nuevas
de resultados
ten mover el
ados Scrollab
ar a través
erística. Otro

de poder apr

ment stmt = c
sultSet.CONC
Set srs = stm

ódigo es sim
o createSta
tSet para
_SCROLL_IN
dos constant
zable: CONC

e si especifica
én, debemos

mprobará si lo

ficando la c
zable, es de
fican constan
áticamente u

dremos un
ntes:TYPE_S
dos es si la
a y si se pu
ndo, una hoja
ras estaba ab
as de resulta
nto, no neces
tSet, entrare
de que no im

dos por nuest

Servidor

J

se, el estudi
pectos de Se

DE DATOS.

en una Hoja

 característic
s tanto haci
 cursor a un
le hace posib
de ella, lo
 uso será mo

rovechar esta

con.createSta
CUR_READ_O
mt.executeQu

milar al utiliz
tement. El p
indicar el

NSENSITIVE
tes de Resul
CUR_READ_
amos un tipo,
 especificar p
os hemos inte

constante TY
ecir, una hoja
ntes para el ti
una TYPE_FO

n objeto
SCROLL_INS
 hoja de res
uede llamar
a de resultad
bierta y en un
ados harán v
sitamos preo
emos en má
mporta el tip
tro controlado

Cla
JSP con b

ante será ca
eguridad y co

 de Resultad

cas del API J
a atrás com

na fila particu
ble crear una
que probabl

overnos a una

as ventajas, n

atement(Resu
ONLY);
uery("SELECT

zado anterior
primer argum
tipo de u

E, y TYPE_S
tSet para es

_ONLY y CON
, también deb
primero el tip
ercambiado.

YPE_FORWA
a en la que
ipo y actualiz
ORWARD_O

ResultSet
SENSITIVE
sultados refle
a ciertos mé
os TYPE_SC
na hoja TYPE
visibles los re
cuparnos de
s detalle má
o de hoja de
or de base de

ase Nº 7
bases de

apaz de:
onexión de B

dos

JDBC 2.0 es
mo hacia ade
ular y compr
 herramienta
emente será
a fila para act

necesitamos c

ultSet.TYPE_

T NOM_PROD

rmente, exce
mento es una
un objeto
CROLL_SEN

specificar si la
NCUR_UPDA
bemos espec
po, y como a

ARD_ONLY
 el cursor só
zación de un
NLY y CONC

desplazable
 o TYPE_SC
eja los camb
étodos para

CROLL_INSE
E_SCROLL_S
esultados si
 los puntos de
ás adelante.
e resultados
e datos y el d

T

 datos

BD para Inte

la habilidad
elante. Tamb
robar la posi
 GUI (Interfa

á uno de los
tualizarla.

crear un obje

SCROLL_SEN

, PRECIO FRO

epto en que
a de las tres
ResultSet:

NSITIVE. El
a hoja de res
ATABLE. Lo
ificar si es de
mbos paráme

se crea un
ólo se muev
objeto Resul

CUR_READ_

e si utili
ROLL_SENS

bios que se h
detectar est

ENSITIVE no
SENSITIVE
se cierran y
elicados de la
Aunque deb
que especifiq

driver utilizad

Tec. En Ingeni

ernet

de mover el
bién hay mé
ción del curs
ace Gráfico de
s principales

eto ResultSe

NSITIVE,

OM PRODUCT

 añade dos
 constantes a

TYPE_FOR
segundo arg

sultados es de
que debemo

e sólo lectura
etros son int

na hoja de
e hacia adel
ltSet, obtend
ONLY.

izamos una
SITIVE. La d
han hecho m
tos cambios.
o refleja los c
si se reflejan
 se vuelve a
as capacidade
eríamos tene
quemos, siem
dos.

ería en Sistem

Página 6

 cursor en u
todos que n
sor. La hoja
e Usuario) pa
s usos de es

et Scrollable:

TOS");

argumentos
añadidas al A

RWARD_ONL
umento es u
e sólo lectura
s recordar aq

a o actualizab
t, el compilad

resultados
lante. Si no
dremos

a de est
diferencia ent
mientras esta
 Generalmen
cambios hech
n. Los tres tip
a abrir. En es
es de un obje
er en mente
mpre estarem

mas

61.

una
nos
de

ara
sta

 al
API
LY,
una
a o
quí
ble.
dor

no
se

tas
tre

aba
nte
hos
pos
ste
eto
 el

mos

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 62.

Una vez que tengamos un objeto ResultSet desplazable, srs en el ejemplo anterior, podemos
utilizarlo para mover el cursor sobre la hoja de resultados. Recuerda que cuando creábamos un
objeto ResultSet anteriormente, tenía el cursor posicionado antes de la primera fila. Incluso
aunque una hoja de resultados se seleccione desplazable, el cursor también se posiciona
inicialmente delante de la primera fila. En el API JDBC 1.0, la única forma de mover el cursor era
llamar al método next. Este método todavía es apropiado si queremos acceder a las filas una a
una, yendo de la primera fila a la última, pero ahora tenemos muchas más formas para mover el
cursor.

La contrapartida del método next, que mueve el cursor una fila hacia delante (hacia el final de
la hoja de resultados), es el nuevo método previous, que mueve el cursor una fila hacia atrás
(hacia el inicio de la hoja de resultados). Ambos métodos devuelven false cuando el cursor se
sale de la hoja de resultados (posición antes de la primera o después de la última fila), lo que
hace posible utilizarlos en un bucle while. Ya hemos utilizado un método next en un bucle
while, pero para refrescar la memoria, aquí tenemos un ejemplo que mueve el cursor a la
primera fila y luego a la siguiente cada vez que pasa por el bucle while. El bucle termina cuando
alcanza la última fila, haciendo que el método next devuelva false. El siguiente fragmento de
código imprime los valores de cada fila de srs, con cinco espacios en blanco entre el nombre y el
precio:

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_READ_ONLY);
ResultSet srs = stmt.executeQuery("SELECT NOM_PROD, PRECIO FROM PRODUCTOS");
while (srs.next())
{
String name = srs.getString("NOM_PROD ");
float price = srs.getFloat("PRECIO");
System.out.println(name + " " + price);
}

Al igual que en el fragmento anterior, podemos procesar todas las filas de srs hacia atrás, pero
para hacer esto, el cursor debe estar detrás de la última fila. Se puede mover el cursor
explícitamente a esa posición con el método afterLast. Luego el método previous mueve el
cursor desde la posición detrás de la última fila a la última fila, y luego a la fila anterior en cada
interacción del bucle while. El bucle termina cuando el cursor alcanza la posición anterior a la
primera fila, cuando el método previous devuelve false.

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);
ResultSet srs = stmt.executeQuery("SELECT NOM_PROD, PRECIO FROM PRODUCTOS");
srs.afterLast();
while (srs.previous())
{
String name = srs.getString("NOM_PROD ");
float price = srs.getFloat("PRECIO");
System.out.println(name + " " + price);
}

Se puede mover el cursor a una fila particular en un objeto ResultSet. Los métodos first, last,
beforeFirst, y afterLast mueven el cursor a la fila indicada en sus nombres. El método
absolute moverá el cursor al número de fila indicado en su argumento. Si el número es
positivo, el cursor se mueve al número dado desde el principio, por eso llamar a absolute(1)
pone el cursor en la primera fila. Si el número es negativo, mueve el cursor al número dado
desde el final, por eso llamar a absolute(-1) pone el cursor en la últimafila. La siguiente línea
de código mueve el cursor a la cuarta fila de srs:

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 63.

srs.absolute(4);

Si srs tuviera 500 filas, la siguiente línea de código movería el cursor a la fila 497:

srs.absolute(-4);

Tres métodos mueven el cursor a una posición relativa a su posición actual. Como hemos podido
ver, el método next mueve el cursor a la fila siguiente, y el método previous lo mueve a la fila
anterior. Con el método relative, se puede especificar cuántas filas se moverá desde la fila
actual y también la dirección en la que se moverá. Un número positivo mueve el cursor hacia
adelante el número de filas dado; un número negativo mueve el cursor hacia atrás el número de
filas dado. Por ejemplo, en el siguiente fragmente de código, el cursor se mueve a la cuarta fila,
luego a la primera y por último a la tercera:

srs.absolute(4); // cursor está en la cuarta fila
. . .
srs.relative(-3); // cursor está en la primera fila
. . .
srs.relative(2); // cursor está en la tercera fila

El método getRow permite comprobar el número de fila donde está el cursor. Por ejemplo, se
puede utilizar getRow para verificar la posición actual del cursor en el ejemplo anterior:

srs.absolute(4);
int rowNum = srs.getRow(); // rowNum debería ser 4
srs.relative(-3);
int rowNum = srs.getRow(); // rowNum debería ser 1
srs.relative(2);
int rowNum = srs.getRow(); // rowNum debería ser 3

Existen cuatro métodos adicionales que permiten verificar si el cursor se encuentra en una
posición particular. La posición se indica en sus nombres: isFirst, isLast, isBeforeFirst,
isAfterLast. Todos estos métodos devuelven un boolean y por lo tanto pueden ser utilizados
en una sentencia condicional. Por ejemplo, el siguiente fragmento de código comprueba si el
cursor está después de la última fila antes de llamar al método previous en un bucle while. Si
el método isAfterLast devuelve false, el cursor no estará después de la última fila, por eso se
llama al método afterLast. Esto garantiza que el cursor estará después de la última fila antes de
utilizar el método previous en el bucle while para cubrir todas las filas de srs.

if (srs.isAfterLast() == false) {
srs.afterLast();
}
while (srs.previous()) {
String name = srs.getString("NOM_PROD");
float price = srs.getFloat("PRECIO");
System.out.println(name + " " + price);
}

Ejemplo de Java Server Pages Con Bases de Datos.

Este es también un caso común con elementos de una tabla, sin embargo es también fácil de
resolver.

Es necesario recordar primero algunas cosas elementales:
1) Recordar que el número de columna en una tabla empieza en 1, esto es que para realizar
alguna operación por ejemplo la columna edad del ejemplo siguiente, su numero de columna es
la numero 3.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 64.

2) La operación que se plantee se puede realizar con todos los renglones de la tabla o con un
solo renglón de la tabla(del resultset).

3) En el ejemplo se realiza la operación con todos los renglones de la tabla y no olvidar que se
tiene que usar la instrucción SQL Update para que la nueva información se actualice en disco,
recordar que los cambios que se hacen a la tabla, es realmente al resultset, que a su vez es una
tabla o base de datos en la memoria de la maquina del cliente o usuario, y estos cambios hay
que actualizarlos o pasarlos o UPDATE a la base de datos en disco.

El siguiente programa le aumenta 5 a todas las edades.

EjemploGuia13.jsp
<html>
<head>
<title>Ejemplo JSP con BD</title>
</head>
<body bgcolor="#F0F0FF">
<p align="center">Ejemplo de Conexión con bases
de Datos.</p>
<hr>
<p align="center"> </p>
<p></p>
<p></p>
<center><table border="1" cellpadding="0" cellspacing="0" bordercolor="#111111"
width="62%">
<tr>
<td width="100%" align="center" height="100">
<p align="center"><u>Los datos de la tabla se
han
actualizado.</u></p>
</td>
</tr>
</table>
</center>
<%@ page import="java.sql.*" %>
<%
int edad, clave;
String q,nombre;
Connection canal = null;
ResultSet tabla= null;
Statement instruccion=null;
String sitiobase = "c:/inetpub/wwwroot/llevar/base/mibase.mdb";
String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
canal=DriverManager.getConnection(strcon);
instruccion = canal.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
}
catch(SQLException e)
{
out.println("EXCEPCION : "+e.getMessage());
};
try
{
tabla = instruccion.executeQuery("select * from mitabla");
tabla.last();
int ultimo=tabla.getInt(1);

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 65.

tabla.first();%>
<p>Los Datos de la Tabla son:</p>
<center><table border="1" cellpadding="0" cellspacing="0" bordercolor="#111111"
width="62%">
<th> CLAVE <th> NOMBRE <th> EDAD
<%
for(int r=1; r<=ultimo; r++)
{
clave = tabla.getInt(1);
nombre = tabla.getString(2);
edad =tabla.getInt(3);
edad=edad+5;
q="update mitabla set edad= "+edad+ " where clave = "+clave+";";
instruccion.executeUpdate(q);
%>
<tr><td align=center> <%=clave%><td> <%=nombre%><td align=center> <%=edad%>
<%
clave=clave+1;
tabla = instruccion.executeQuery("select * from mitabla");
tabla.absolute(clave);
}; %>
</table>
</center>
<%
}
finally
{
try
{
if (tabla != null)
{
tabla.close();
}
if (instruccion != null)
{
instruccion.close();
}
if (canal != null)
{
canal.close();
}
}
catch (Exception e)
{
out.println("EXCEPCION : "+e.getMessage());
}
}
%>
</body>
</html>

Aplicac

OBJET

Al final

PROC

La cla

En oca
manejo
fechas
instanc

Como
Date
toLoca
String.
desple

Fecha

<HTML
hola ho
<%= n
</HTM

El sigu
sistem
ejempl

http:/
Fecha

<%@p

<%Da
DateFo
%>
<html>
<head
<base
<title>
</head
<body
<table
<tr alig
<td bg
<img s

iones Cliente S

TIVOS

lizar la Práctic
• Util• Rea• Util• Cre

EDIMIENTO

se Date.

asiones, los
o de fechas
 y horas. Si u
cia que se ini

las fechas s
proporciona
leString (a c
. Por ejemplo
gar la fecha y

.jsp

L>
oy es:

new java.util

ML>

uiente ejempl
a en format
lo:

//localhost/
Larga.jsp

page import=

teFormat dtL
ormat.LONG,

>
>
 target=conte

>Encabezado
d>
 rightMargin=

e border=0 ce
gn= center>
gcolor=#0066
src='../Image

Servidor

ca, el estudia
izar distintos

alizar Consult
izar diferente

ear acceso a A

programas n
en Java, jav

un programa
cializa con la

e representa
un método

adena local)
o las siguiente
y hora del sis

.Date().toLoc

lo JSP, mues
o largo. Para

/MiAplicació

="java.util.*,j

Long = DateF
 DateFormat.

ents>
 de la Aplicac

=2 leftMargin
ellpading=0 c

699 height=5
enes/Logo.gif

Guía P
JSP con B

nte será capa
s formatos pa
tas a Bases d
es tipos de co
Aplicaciones W

necesitan tra
va.util.date,
 llama al con

a fecha y hora

an de diferen
 que da fo
 toma la info
es instruccion
stema.

caleString() %

tra el encabe
a ejecutarlo

ón/FechaLar

ava.text.*"%

Format.getDa
.LONG); //Ob

ción</title>

n=2 topMargi
cellspacing=0

58><p align=
f' width=69 h

Práctica N
Bases de

az de:
ara desplegar
e Datos por m

onexión ODBC
Web con JSP

bajar con la
proporciona
structor de la
a en curso.

ntes formas e
ormato a la
ormación de l
nes de JSP ut

%>

ezado de una
debe incluir

rga.jsp?NOM

%>

ateTimeInstan
bteniendo For

n=2 text=#F
0 width=100%

=left>
height=82><

T

No 7
e Datos

r la fecha del
medio de SQ
C con bases d
.

 fecha y ho
métodos pa
a clase date s

en distintas
 fecha en e
a fecha de la
tilizan los mé

a aplicación W
 en la URL e

MBRE=JOSE

nce(
rmato de Fec

FFFFFF>
% height=65

</td>

Tec. En Ingeni

 sistema.
L, utilizando
de Datos.

ra en curso.
ra represent
sin parámetr

partes del m
el estilo loc
a instancia y
étodos de la c

Web incluyen
el parámetro

E PEREZ.

cha

>

ería en Sistem

Página 6

 JSP.

 La clase pa
ar y manipu

ros, se crea u

mundo, la cla
cal. El méto
 crea un obje
clase Date pa

ndo la fecha d
o NOMBRE, p

mas

66.

ara
lar

una

ase
odo
eto
ara

del
por

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 67.

<td height=78 bgcolor=#006699>

 SISTEMA DE CONTROL DE ACCESOS

BIENVENID@ <%= request.getParameter("NOMBRE")%>

</td>
</tr>
<tr>
<td valign='top' align='right' colspan=2 bgcolor=#000080><font face=Verdana size=1
color=#ffffff>
<%
//Obteniendo La fecha Actual, supriendo la Hora ***
String Fecha = dtLong.format(new Date()).toString();
int Contar = Fecha.indexOf(":");// Buscando los 2 puntos de la hora
Fecha = Fecha.substring(0,Contar-3); //recuperando solo la fecha en formato largo
out.println(Fecha); //Imprimiendo Fecha Actual ***
%>
</td>
</tr>
</table>
</body>
</html>

JDBC SQL RESULTSET

El modelo de datos de java descansa en una serie de objetos especializados que facilitan el
procesamiento de una base de datos.

· El problema es comunicar un programa o aplicación con una base de datos y más que
comunicar se pretende que el programa o aplicación realice una serie de procesos u operaciones
con la base de datos o mejor aun con el conjunto de tablas que contiene una base de datos.

· La primera nota a recordar es que una base de datos puede estar físicamente en el servidor y
en algún folder o directorio del disco duro de dicha maquina servidora por ejemplo,
c:\prograiv\misitio\mibase.mbd, como se observa la base que se construyó en access
(mibase.mbd) se almaceno en el disco c en el folder prograiv y dentro del subfolder misitio.

· El modo de comunicarse entre nuestro programa o aplicación y la base de datos (ya sea física

o un dbserver) implica que ambos manejen un lenguaje de programación común, es decir no se
puede mandar una instrucción en Basic o pascal, a la base de datos y además esperar que esta
ultima la entienda (para entender esto, una razón muy sencilla es que la base de datos tendría
que conocer o comprender todos los lenguajes de programación), para resolver este problema
de comunicación es que se usa un lenguaje común de bases de datos que tanto los lenguajes de
programación existentes como las bases de datos entienden, este lenguaje común de bases de
datos es el SQL (structured query languaje) o lenguaje estructurado de consultas.

Ahora para mandar las instrucciones SQL a la base de datos, la respuesta son los siguientes
OBJETOS.

_ OBJETO JDBCODBCDRIVER: Objeto que se utiliza para traducir las instrucciones del
lenguaje SQL a las instrucciones del lenguaje original de la base de datos.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 68.

_ OBJETO CONNECTION: Objeto que se utiliza para establecer una conexión o enlace a la base
de datos.

_ OBJETO RESULTSET: Es la representación en memoria de una de las tablas de la base de
datos en disco, se puede entender como una tabla virtual, recordar que generalmente todos los
procesos que se realicen con la tabla (insertar registros, eliminar registros, etc) se realizaran
realmente contra un resulset y no provocaran ningun cambio en la tabla física en disco, resulset
tiene un conjunto de métodos muy útiles y muy usados para el proceso de los renglones de la
tabla virtual.

_ OBJETO STATEMENT: Este objeto y sus dos métodos executequery (solo consultas de
Selección) y executeupdate (Solo para consultas de Acción) son los métodos que se utilizaran
para comunicarse con la tabla física en disco.

Ejemplo:
Connection con = null;
ResultSet rs= null;
Statement stmt=null;
String sitiobase = "c:/prograiv/base/mibase.mdb";
String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con = DriverManager.getConnection(strcon);
stmt = canal.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
}
catch(java.lang.ClassNotFoundException e)
{
//instrucciones Catch
}
catch(SQLException e)
{
//instrucciones Catch
};

Para ejecutar el siguiente ejemplo debe incluir en la URL el parámetro EDAD, por ejemplo:

Consulta1.jsp
<HTML><HEAD><TITLE>EJEMPLO DE CONEXIÓN A BASES DE DATOS</TITLE></HEAD>
<BODY><H2 ALIGN=CENTER> INFORMACIÓN ALMACENADA EN LA BASE DE DATOS
</H2><HR><P>
<%@ page import="java.io.*, java.util.*, java.net.*, java.sql.*" %>
<%
Connection canal = null;
ResultSet tabla= null;
Statement instruccion=null;
String sitiobase = "c:/inetpub/wwwroot/MiAplicación/base/mibase.mdb";
String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
canal=DriverManager.getConnection(strcon);
instruccion = canal.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
}
catch(java.lang.ClassNotFoundException e)
{
out.println("EXCEPCION CLASE NO ENCONTRADA: "+e.getMessage());

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 69.

}
catch(SQLException e)
{
out.println("EXCEPCION1 SQL: "+e.getMessage());
};
int edad = Integer.parseInt(request.getParameter("EDAD"));
String q="select * from mitabla where edad >="+edad;
try
{
tabla = instruccion.executeQuery(q);
out.println("<CENTER><TABLE Border=10 CellPadding=5><TR>");
out.println("<th bgcolor=Green>CLAVE</th><th bgcolor=White>NOMBRE</th><th
bgcolor=Red>EDAD</th></TR>");
while(tabla.next())
{
out.println("<TR>");
out.println("<TD>"+tabla.getString(1)+"</TD>");
out.println("<TD>"+tabla.getString(2)+"</TD>");
out.println("<TD>"+tabla.getString(3)+"</TD>");
out.println("</TR>");
}; // fin while
out.println("</TABLE></CENTER></HTML>");
tabla.close();
} //fin try no usar ; al final de dos o mas catchs
catch(SQLException e)
{
out.println("EXCEPCION2 SQL: "+e.getMessage());
};
try
{
canal.close();
}
catch(SQLException e)
{
out.println("EXCEPCION3 SQL: "+e.getMessage());
};
%>

IMAGENES EN APLICACIONES CON BASES DE DATOS.

Campos de gráficos o de imágenes, se han convertido en elementos importantes de cualquier
base de datos.
Para manejar este elemento con java-jsp puedes utilizar el siguiente método:
Primero subir las imágenes (de preferencia jpg) con un ftp normal a tusitio o directorio donde
guardarás las imágenes y después usar el tag de html y además agregar un campo
de texto llamado fotourl o foto a la tabla en Access y grabar la dirección o path de la imagen en
este campo, por ejemplo http://programacionfacil.com/tusitio/pato.jpg o simplemente
/tusitio/pato.jpg Después solo cargar este tag imageurl en la página que se construirá que no
es otra cosa que el programa de búsqueda con el despliegue del campo extra, como lo muestra
el programa ejemplo
Para ejecutar el siguiente ejemplo debe incluir en la URL el parámetro CLAVE, por ejemplo:
http://localhost/MiAplicación/Consulta2.jsp?CLAVE=1.
Se asume además que todas las imágenes se guardan en el directorio “Base” y que tiene
extensión jpg. Se recomienda analizar detenidamente el ejemplo.
Consulta2.jsp
<HTML><HEAD><TITLE>EJEMPLO DE REGISTROS CON IMAGENES</TITLE></HEAD><BODY>
<H2 ALIGN=CENTER> INFORMACIÓN DEL USUARIO CON FOTOGRAFIA </H2><HR><P>
<%@ page import="java.io.*, java.util.*, java.net.*, java.sql.*" %>
<%

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 70.

String foto;
Connection canal = null;
ResultSet tabla= null;
Statement instruccion=null;
String sitiobase = "c:/inetpub/wwwroot/llevar/base/mibase.mdb";
String strcon= "jdbc:odbc:Driver={Microsoft Access Driver (*.mdb)};DBQ=" + sitiobase;
try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
canal=DriverManager.getConnection(strcon);
instruccion = canal.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);
}
catch(java.lang.ClassNotFoundException e)
{
out.println("EXCEPCION CLASE NO ENCONTRADA: "+e.getMessage());
}
catch(SQLException e)
{
out.println("EXCEPCION1 SQL: "+e.getMessage());
};
int clave = Integer.parseInt(request.getParameter("CLAVE"));
String q="select * from mitabla where clave="+clave;
try {
tabla = instruccion.executeQuery(q);
out.println("<center><TABLE Border=10 CellPadding=5><TR>");
out.println("<th bgcolor=Green>CLAVE</th><th bgcolor=White>NOMBRE</th><th
bgcolor=Red>EDAD</th><th
bgcolor=gray>FOTOGRAFIA</th></TR>");
while(tabla.next())
{
out.println("<TR>");
out.println("<TD>"+tabla.getString(1)+"</TD>");
out.println("<TD>"+tabla.getString(2)+"</TD>");
out.println("<TD>"+tabla.getString(3)+"</TD>");
foto=tabla.getString(4);
out.println("<TD>");
out.println("</TR>");
}; // fin while
out.println("</TABLE></CENTER></HTML>");
tabla.close();
}
catch(SQLException e)
{
out.println("EXCEPCION2 SQL: "+e.getMessage());
};
try
{
canal.close();
}
catch(SQLException e)
{
out.println("EXCEPCION3 SQL: "+e.getMessage());
};
%>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 71.

EJERCICIOS

Para la realización de los siguientes ejercicios deberás crear una base de datos en Access con el
nombre de MiAplicación.mdb.

1. Construir una tabla (notas) en que traiga carnet, nombre, apellido, calif1, calif2, calif3 y
promedio, cargar en Access unos 5 renglones de alumnos, no cargar promedio, el promedio lo
deberán calcular con un programa en JSP.
NOTA. CALIF1 equivale al 30% de la nota final, CALIF2 Y CALIF3 cada una 35%.

2. Crear un programa en JSP que muestre la información almacenada en la tabla anterior.

3. Construir un proceso de búsqueda de un alumno por medio de carnet, nombre o apellido y
que pueda mostrar los datos de sus calificaciones y promedio final.

4. Crear la interfaz de entrada de una aplicación web, que pida el identificador de usuario y
contraseña, la validez de estos parámetros se verificará con la información almacenada en la
base de datos. Si el usuario es válido se desplegará la pantalla de entrada del sistema en una
interfaz web compuesta por 3 marcos (frames); un encabezado que mostrará un mensaje de
bienvenida y la fecha del sistema, un menú principal, y una pagina principal, como se muestra
en la figura.

Aplicac

OBJET

Al final

DESAR

Introd
El prot
una lim
página
protoco
Cuando
conexi

Qué e
Una se
interca
usuario

El tiem
un sitio

- Cuan

- Cuan
caso l
crearí

- Se h

Una po
sesión
hasta f
una pá

Tambié
login y
sobre
habers
página
tipo se

Para p
page a
utiliza

<%@p
El man
específ

iones Cliente S

TIVOS

lizar la clase, • Definir q• Maneja

RROLLO

ducción
tocolo HTTP p
mitación que
a dentro de u
olo sin estado
o se solicita u
ón por la que

s una sesión
esión es una s
ambio de info
o a través de

mpo de vida d
o web pero s

ndo se aban

ndo se alcan
a sesión es
ía una nueva

a cerrado o

osible aplicac
 permite ir el
finalizar la co
ágina a otra s

én se utilizan
y un passwo
las páginas q
se identificado
a de identifica
esión la inform

poder hacer u
a true, de est
las sesiones

page session=
nejo de las se
fica para cad

Servidor

Man

el estudiante
que es el esta
r el estado de

permite acced
consiste en q
n mismo serv
o.
una página in
e envía los da

n
serie de com

ormación. Por
e la aplicación

de una sesión
u finalización

ndona el sitio

nza un tiemp
 automática
a sesión.

 reiniciado e

ión de las ses
igiendo una s

ompra. Sin el
se iría perdien

n para la iden
rd. Después
que va a visit
o, el sistema
ación. Para po
mación neces

uso de las se
ta forma se n
del protocolo

=’true’%>
esiones impid
a usuario e in

Cla
nejo de s

 c

e será capaz d
ado de sesión
e sesión utiliz

der a páginas
que no puede
vidor. Por est

ndependiente
atos y luego é

unicaciones e
r medio de un
n.

 comienza cu
n puede estar

o web.

po de inacti
amente elim

el servidor

siones es en
serie de prod
 uso de sesio
ndo toda la in

ntificación de
 de haber h
tar, de tal fo
 comprobará
oder realizars
saria para sab

esiones en JS
notifica al con
o HTTP:

de el intercam
ncluso si se t

ase Nº 8
sesiones y
con JSP

de:
n.
zando sesione

s web y envia
e almacenar c
ta razón a es

emente del tip
ésta es cerra

entre un clien
na sesión se

uando un usu
r relacionada

vidad que e
inada. Si el

 el comercio e
ductos e irlos
ones no se po
nformación.

 usuarios, en
echo esto el

orma que si u
 que no se h
se estas oper
ber que el us

SP hay que p
ntenedor que

mbio de datos
trata del mism

T

y cookies

es y cookies c

ar datos de u
cuando se ca
te protocolo

po que sea, e
da una vez q

nte y un serv
puede hacer

uario se conec
 con tres circ

es previame
 usuario sig

electrónico. E
 añadiendo a
odría hacer po

 la que se de
 usuario ten

un usuario in
a identificado
raciones es n
uario se ha id

poner el atrib
e la página in

s entre ellas
mo usuario.

Tec. En Ingeni

s

con JSP.

n formulario
mbia de serv
se le conoce

el servidor ab
que ha termin

vidor en la qu
 un seguimie

cta por prime
unstancias:

nte establec
uiera naveg

En este caso
 nuestro “car
orque al ir na

ben de introd
ndrá una ser
tenta pasar a
o y sería redi
ecesario alm
dentificado co

buto session
nterviene en

ya que se tra

ería en Sistem

Página 7

 pero tiene
vidor o de
 como

bre una
nado.

e se realiza u
nto de un

era vez a

cido, en est
gando se

una
rrito” y así
avegando de

ducir un
ie de permis
a una página
ireccionado a
acenar en un
orrectamente

 de la direct
un proceso q

ata informaci

mas

72.

un

e

sos
a si
a la
nas
e.

iva
que

ión

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 73.

Manejo de las sesiones

En JSP las acciones que se pueden realizar sobre las sesiones se lleva a cabo mediante la
interface HttpSession y los métodos que implementa. Esta interfaz está incluida dentro del
paquete javax.servlet.http y es utilizada por el contenedor de páginas JSP para crear una sesión
entre el servidor y el cliente.

Para obtener la sesión de un usuario se utiliza el método getSession() que devuelve una
interfaz de tipo HttpSession.

<%
HttpSession sesion=request.getSession();
%>

Una vez creado el objeto de tipo sesión es posible acceder a una serie de datos sobre la
misma. Uno de estos datos es idSession que devuelve un identificador único asociado a una
sesión:

<%
HttpSession sesion=request.getSession();
out.println(“IdSesion: ”+sesion.getId());
%>

Es posible conocer el momento en el que se creó la sesión:

<%@page import=”java.util.*” session=”true”%>
<%
HttpSession sesion=request.getSession();
out.println(“Creación: “+sesion.getCreationTime());
Date momento=new Date(sesion.getCreationTime());
out.println(“
Creación: “+momento);
%>
En el primer caso se muestra el dato tal cual lo devuelve el método getCreationTime(), que
es una fecha en formato long, mientras que en el segundo caso se formatea para que tenga un
aspecto más común.

También se puede conocer la fecha y hora de la última vez que el cliente accedió al servidor con
el que se creó la sesión, utilizando el método getLastAccesedTime():
<%
Date acceso=new Date(sesion.getLastAccessedTime());
out.println(“Último acceso: “+acceso+”
”);
%>

Teniendo en cuenta el momento en el que ser creó la sesión y la última vez que se accedió
al servidor, se puede conocer el tiempo que lleva el cliente conectado al servidor, o lo que es lo
mismo el tiempo que lleva el usuario navegando por la páginas JSP:
<%
long longDuracion=sesion.getLastAccessedTime()
sesion.getCreationTime();
Date duracion=new Date(longDuracion);
out.println(“Duracion:
“+duracion.getMinutes()+”min.”+duracion.getSeconds()+”seg”)
;
%>
La interfaz HttpSession ofrece el método isNew() mediante el cual es posible saber si la
sesión creada es nueva o se está tomando de una previamente creada:

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 74.

<%
HttpSession sesion=request.getSession();
out.println(“nueva: “+sesion.isNew());
%>

Si se ejecuta el ejemplo la primera vez el método devolverá true, ya que previamente no había
ninguna sesión y ha sido creada en ese instante. Si se recarga la página devolverá false ya que
la sesión ya ha sido creada.

Guardar objetos en una sesión

Para guardar un objeto en una sesión se utiliza el método setAttribute(), que ha sustituido al
método putValue(). Este método utiliza dos argumentos:

- El primero es el nombre que identificará a esa variable.
- El segundo es el dato que se va a guardar.

SetAttribute(java.lang.String name, java.lang.Object value)

Un ejemplo de cómo guardar una cadena de texto en la sesión:

<%@page import=”java.util.*” session=”true” %>
<%
HttpSession sesion=request.getSession();
sesion.setAttribute(“trabajo”,”Paginas de JSP”);
%>

Si se quiere pasar un parámetro que no sea un objeto es necesario realizar una conversión:

<%@page import=”java.util.*” session=”true” %>
<%
HttpSession sesion=request.getSession();
Integer edad=new Integer(26);
sesion.setAttribute(“edad”,edad);
%>

Si se hubiera utilizado el valor entero en vez del objeto Integer, el resultado habría sido similar
al siguiente.

Incompatible type for meted. Can’t convert int to java.lang.Object.

En el primer ejemplo este no sucedería puesto que una cadena es un objeto de tipo String,
no así un entero . Así habría sido igual si en el primer caso ponemos:

<%@page import=”java.util.*” session=”true” %>
<%
HttpSession sesion=request.getSession();
String nombre=new String(“Paginas de JSP·);
sesion.setAttribute(“trabajo”,nombre);
%>

En caso de tratarse objeto de tipo Vector (parecido a un array con dos diferencias: la primera es
que puede almacenar todo tipo de objetos, y la segunda es que no es necesario establecer de
forma previa el tamaño que va a tener) que almacene los 7 días de la semana. El código sería el
siguiente:
<%@page import=”java.util.*” session=”true” %>
<%
HttpSession sesion=request.getSession();

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 75.

Vector v=new Vector();
v.addElement(new String(“Lunes”));
v.addElement(new String(“Martes”));
v.addElement(new String(“Miercoles”));
v.addElement(new String(“Jueves”));
v.addElement(new String(“Viernes”));
v.addElement(new String(“Sábado”));
v.addElement(new String(“Domingo”));
sesion.setAttribute(“diasSemana”,v);
%>

Recuperar objetos de una sesión

Los datos que se guardan en la sesión permanecen ahí a la espera de ser utilizados. Para ello es
necesario realizar el proceso contrario a cuando se graban, comenzando por la recuperación del
objeto de la sesión para empezar a ser tratado.

Para poder realizar este paso se utiliza el método getAttribute() (anteriormente se utilizaba el
método getValue(), pero este método se encuentra en desuso), utilizando como argumento el
nombre que identifica al objeto que se quiere recuperar.

getAttribute(java.lang,String nombre)

Un ejemplo de recuperación de objetos almacenados en la sesión:
<%
HttpSession sesion=request.getSession();
Sesion.getAttribute(“nombre”);
%>
Cuando este método devuelve el objeto no establece en ningún momento de qué tipo de
objeto se trata(String, Vector...)

Por ello si se conoce previamente el tipo de objeto que puede devolver tras ser recuperado de la
sesión es necesario realizar un casting, para convertir el objeto de tipo genérico al objeto exacto
que se va a usar. Para realizar esta operación se añade el tipo de objeto al lado de tipo
HttpSession que utiliza el método getAttribute() para obtener el objeto que devuelve:

<%
HttpSession sesion=request.getSession();
String nombre=(String)sesion.getAttribute(“nombre”);
out.println(“Contenido de nombre: “+nombre);
%>

Si no existe ningún objeto almacenado en la sesión bajo el identificador que se utiliza en el
método getAttribute(), el valor devuelto será null. Por ello habrá que prestar especial atención
ya que si se realiza el casting de un valor null el contenedor JSP devolverá un error. Lo mejor en
estos casos es adelantarse a los posibles errores que pueda haber.

<%
if(sesion.getAttribute(“nombre”)!=null)
{
String nombre=(String)sesion.getAttribute(“nombre”);
out.println(“Contenido de nombre: “+nombre);
}
%>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 76.

Por último, el ejemplo del vector guardado en la sesión tiene un tratamiento similar al de
los casos anteriores. El primer paso es recuperar el objeto de la sesión:

<%@page import=”java.util.*” session=”true” %>
<%
HttpSession sesion=request.getSession();
sesion.getAttribute(“diasSemana”);
%>

Como se sabe que el objeto es de tipo Vector se puede recuperar y convertir en un solo
paso:

Vector v= (Vector) sesion.getAttribute(“diasSemana”);

A partir de este momento se puede acceder a los elementos del vector independientemente
de si venía de una sesión o ha sido creado. Para ello se utiliza el método size() que devuelve el
tamaño del vector para ir leyendo cada uno de sus elementos:

<%
for(int i=0; i<v.size(); i++)
{
out.println(“Dia: ”+(String)v.get(i)+”
”);
}
%>

Cómo se destruye una sesión

Como se ha visto, los datos almacenados por las sesiones pueden destruirse en tres casos:

- El usuario abandona aplicación web (cambia de web o cierra el navegador) - Se alcanza el
tiempo máximo permitido de inactividad de un usuario (timeout).

- El servidor se para o se reincia.

Pero la situación más probable es querer iniciar las sesiones o dar por finalizada una si se
ha cumplido una o varias condiciones. En este caso no es necesario esperar a que ocurra alguno
de los tres casos citados anteriormente, ya que mediante el método invalidate() es posible
destruir una sesión concreta.

En el siguiente caso la sesión “sesión” se destruye al invocar el método invalidate(); y por
la tanto el valor u objeto que está asociado a la misma.
<%
[...]
sesion.invalidate();
%>

Cookies

Las sesiones vistas anteriormente basan su funcionamiento en los cookies. Cuando se hace uso
de la interfaz HttpSession de forma interna y totalmente transparente al programador se está
haciendo uso de los cookies. De hecho cuando a través de una página JSP se comienza una
sesión, se crea un cookie llamado JSSESIONID. La diferencia es que este cookie es temporal y
durará el tiempo que permanezca el navegador ejecutándose, siendo borrada cuando el usuario
cierre el navegador.

Crear una cookie

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 77.

Un cookie almacenado en el ordenador de un usuario está compuesto por un nombre y un valor
asociado al mismo. Además, asociada a este cookie pueden existir una serie de atributos que
definen datos como su tiempo de vida, alcance, dominio, etc.

Cabe reseñar que los cookies, no son más que ficheros de texto, que no pueden superar un
tamaño de 4Kb, además los navegadores tan sólo pueden aceptar 20 cookies de un mismo
servidor web (300 cookies en total).

Para crear un objeto de tipo Cookie se utiliza el constructor de la clase Cookie que requiere
su nombre y el valor a guardar. El siguiente ejemplo crearía un objeto Cookie que contiene el
nombre “nombre” y el valor “objetos”.

<%
Cookie miCookie=new Cookie(“nombre”,”objetos”);
%>

También es posible crear cookies con contenido que se genere de forma dinámica. El siguiente
código muestra un cookie que guarda un texto que está concatenado a la fecha/hora en ese
momento:

<%@page contentType="text/html; charset=iso-8859-1"
session="true" language="java" import="java.util.*" %>
<%
Cookie miCookie=null;
Date fecha=new Date();
String texto= “Este es el texto que vamos a guardar en el cookie”+fecha;
miCookie=new Cookie(“nombre”,texto);
%>

Por defecto, cuando creamos un cookie, se mantiene mientras dura la ejecución del navegador.
Si el usuario cierra el navegador, los cookies que no tengan establecido un tiempo de vida serán
destruidos.
Por tanto, si se quiere que un cookie dure más tiempo y esté disponible para otras situaciones es
necesario establecer un valor de tiempo (en segundos) que será la duración o tiempo de vida del
cookie. Para establecer este atributo se utiliza el método setMaxAge(). El siguiente ejemplo
establece un tiempo de 31 días de vida para el cookie “unCookie”:

<%
unCookie.setMaxAge(60*60*24*31);
%>

Otros de los atributos que se incluye cuando se crea un cookie es el path desde el que será
visto, es decir, si el valor del path es “/” (raíz), quiere decir que en todo el site se podrá utilizar
ese cookie, pero si el valor es “/datos” quiere decir que el valor del cookie sólo será visible
dentro del directorio “datos”. Este atributo se establece mediante el método setPath().

<%
unCookie.setPath(“/”);
%>
Para conocer el valor de path, se puede utilizar el método getPath().
<%
out.println(“cookie visible en: “+unCookie.getPath());
%>

Existe un método dentro de la clase Cookie que permite establecer el dominio desde el cual
se ha generado el cookie. Este método tiene su significado porque un navegador sólo envía al

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 78.

servidor los cookies que coinciden con el dominio del servidor que los envió. Si en alguna
ocasión se requiere que estén disponibles desde otros subdominios se especifica con el método
setDomain(). Por ejemplo, si existe el servidor web en la página www.paginasjsp.com , pero al
mismo tiempo también existen otros subdominios como usuario1.paginasjsp.com,
usuario2.paginasjsp.com, etc.

En el siguiente ejemplo hace que el cookie definido en el objeto “unCookie” esté disponible para
todos los dominios que contengan el nombre “.paginasjsp.com”. Un nombre de dominio debe
comenzar por un punto.

<%
unCookie.setDomain(“.paginasjsp.com”);
%>

Igualmente, para conocer el dominio sobre el que actúa el cookie, basta con utilizar el
método getDomain() para obtener esa información.
Una vez que se ha creado el objeto Cookie, y se ha establecido todos los atributos necesarios es
el momento de crear realmente, ya que hasta ahora sólo se tenía un objeto que representa ese
cookie.
Para crear el fichero cookie real, se utiliza el método addCookie() de la interfaz
HttpServletResponse:
<%
response.addCookie(unCookie);
%>
Una vez ejecutada esta línea es cuando el cookie existe en el disco del cliente que ha
accedido a la página JSP.

Es importante señalar que si no se ejecuta esta última línea el cookie no habrá sido grabado
en el disco, y por lo tanto, cualquier aplicación o página que espere encontrar dicho cookie no lo
encontrará.

Recuperar un cookie
El proceso de recuperar un cookie determinado puede parecer algo complejo, ya que no hay una
forma de poder acceder a un cookie de forma directa. Por este motivo es necesario recoger
todos los cookies que existen hasta ese momento e ir buscando aquél que se quiera, y que al
menos, se conoce su nombre.
Para recoger todos los cookies que tenga el usuario guardados se crea un array de tipo
Cookie, y se utiliza el método getCookies() de la interfaz HttpServletRequest para recuperarlos:
<%
Cookie [] todosLosCookies=request.getCookies();
/* El siguiente paso es crear un bucle que vaya leyendo
todos los cookies. */
for(int i=0;i<todosLosCookies.length;i++)
{
Cookie unCookie=todosLosCookies[i];
/* A continuación se compara los nombres de cada uno de
los cookies con el que se está buscando. Si se encuentra un
cookie con ese nombre se ha dado con el que se está
buscando, de forma que se sale del bucle mediante break. */
if(unCookie.getName().equals(“nombre”))
break;
}
/* Una vez localizado tan sólo queda utilizar los
métodos apropiados para obtener la información necesaria
que contiene. */
out.println(“Nombre: “+unCookie.getName()+”
”);
out.println(“Valor: “+unCookie.getValue()+”
”);
out.println(“Path: “+unCookie.getPath()+”
”);

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 79.

out.println(“Tiempo de vida:“+unCookie.getMaxAge()+”
”);
out.println(“Dominio: “+unCookie.getDomain()+”
”);
%>

Aplicac

OBJET

Al final• •

PROC

Admin

Un cas
habien
podrán
sin hab
modo,

La prim
de usu
La pág
el botó
recibir
usuario

login.j
<%@p
session
<html>
<head
</head
<body
Pr
<p>
<%
if(requ

Esta pá
vez rec
se com
Si esta
variabl
A cont
la pági
comple
En cas
hacia l
llamad

iones Cliente S

TIVOS

lizar la Práctic
Desarrollar
Crear aplica

EDIMIENTO

nistración de

so práctico do
ndo introducid
n visualizar y
berse identif
 no pueda ac

mera página d
uario y una cl
gina JSP cont
ón de enviar
 un parámetr
o ve qué tipo

jsp
page contentT
n="true" lang
>
><title>Proc
d>
>

roceso de ide

uest.getParam

ágina es la en
cibidos se alm

mparan con lo
a comprobació
le “usuario” e
inuación y m
ina final en la
etado de form
o que la com
a página de i

do “error” con

Servidor

Man

ca, el estudia
aplicaciones

aciones utiliza

e usuarios.

onde poder u
do previamen
 de igual mo
icado será re

cceder de form

de la aplicaci
ave por lo qu
iene el formu

r los datos. A
ro llamado “e
o de error se

Type="text/h
guage="java"

ceso de login

ntificación</

meter("error"

ncargada de
macenan en d
os valores cor
ón es correct
en la sesión m
ediante la op

a que se encu
ma satisfactor

mprobación de
inicio, para q
n un mensaje

Guía P
nejo de s

 c

nte será capa
utilizando se

ando cookies

sar las sesion
nte un usuari
odo si alguien
edirigido a la
ma anónima.

ón JSP es en
ue su aspecto
ulario el cual
Además se h
error” se mue
ha producido

html; charset
" import="jav

</title>

B>

)!=null)

recoger del u
dos variables
rrectos del us
ta se crea un
mediante el m
pción estánda
uentra el men
ria el proceso
e usuario y cl
ue vuelva a i

e que avisará

Práctica N
sesiones y
con JSP

az de:
siones con JS
con JSP.

nes es en las
o y una clave

n intenta entr
a página prin

 la que el usu
o será el de u
 especifica la

ha añadido u
estra el mens
o.

t=iso-8859-1
va.util.*" %>

usuario y la c
(“usuario” y
suario y la cla
 objeto de tip

método setAtt
ar <jsp: fordw
nú de opcione
o de identifica
ave no se cu
identificarse
 de qué es lo

T

No 8
y cookies

SP.

 páginas a la
e. Si no se int
rar directame
cipal para qu

uario se debe
un formulario
a página dest
na comproba
aje que conte

"
>

clave enviado
“clave”) de t
ave.
po session y s
tribute().
ward> se red
es al que se a
ación.
mpla se redir
incluyendo es
 que le ha oc

Tec. En Ingeni

s

s que se deb
troducen esto
ente a una de
ue se identifi

e identificar c
.
tino cuando e
ación en la q
enga. De esta

os desde el fo
ipo String. A

se guarda el

direcciona al u
accede despu

recciona al u
sta vez un pa
currido.

ería en Sistem

Página 8

be acceder
os datos no s
e estas págin
ique y, de es

con un nombr

el usuario pu
que en caso
a forma el

ormulario. Un
 continuación

 valor en la

usuario a
ués de haber

suario
arámetro

mas

80.

se
nas
ste

re

lse
de

a
n

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 81.

checklogin.jsp
<%@ page session="true" %>
<%
String usuario = "";
String clave = "";
if (request.getParameter("usuario") != null)
usuario = request.getParameter("usuario");
if (request.getParameter("clave") != null)
clave = request.getParameter("clave");
if (usuario.equals("spiderman") &&
clave.equals("librojsp")) {
HttpSession sesionOk = request.getSession();
sesionOk.setAttribute("usuario",usuario);
%>
<jsp:forward page="menu.jsp" />
<%
} else {
%>
<jsp:forward page="login.jsp">
<jsp:param name="error" value="Usuario y/o clave
incorrectos.
Vuelve a intentarlo."/>
</jsp:forward>
<%
}
%>

menu.jsp
<%@ page session="true" %>
<%
String usuario = "";
HttpSession sesionOk = request.getSession();
if (sesionOk.getAttribute("usuario") == null) {
%>
<jsp:forward page="login.jsp">
<jsp:param name="error" value="Es
obligatorio identificarse"/>
</jsp:forward>
<%
} else {
usuario = (String)sesionOk.getAttribute("usuario");
}
%>
<html>
<head><title>Proceso de login</title>
</head>
<body>
PROCESO DE IDENTIFICACIÓN<p>
Menú de administración

Usuario activo: <%=usuario%><p>
 Crear nuevo usuario
 Borrar un usuario
 Cambiar clave
<p>
 Cerrar sesión
</body>
</html>

La última opción que incorpora el menú es la de “Cerrar sesión”, que será de gran utilidad

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 82.

cuando se haya finalizado el trabajo y queremos estar seguro que nadie realiza ninguna acción
con nuestro usuario y clave.
Al pulsar este enlace, se recupera de nuevo la sesión y mediante el método invalidate() se
da por finalizada la sesión.

cerrarsesion.jsp
<%@ page session="true" %>
<%
HttpSession sesionOk = request.getSession();
sesionOk.invalidate();
%>
<jsp:forward page="login.jsp"/>

Utilizar cookies
Para realizar un ejemplo práctico se va a seguir con el ejemplo de Sesiones. El objetivo será
modificar las páginas necesarias para que si el usuario selecciona un campo de tipo checkbox
(que será necesario añadir) el nombre de usuario le aparezca por defecto cuando vuelva a entrar
a esa página. Este nombre de usuario estará guardado en un cookie en su ordenador.
El primer paso es añadir el checkbox en la página login.jsp:

<%@ page session="true" import="java.util.*"%>
<%
String usuario = "";
String fechaUltimoAcceso = "";
/*Búsqueda del posible cookie si existe para recuperar
su valor y ser mostrado en el campo usuario */
Cookie[] todosLosCookies = request.getCookies();
for (int i=0; i<todosLosCookies.length; i++) {
Cookie unCookie = todosLosCookies[i];
if (unCookie.getName().equals("cokieUsu")) {
usuario = unCookie.getValue();
}
}
/* Para mostrar la fecha del último acceso a la página.
Para ver si el cookie que almacena la fecha existe, se busca en los
cookies existentes. */
for (int i=0; i<todosLosCookies.length; i++) {
Cookie unCookie = todosLosCookies[i];
if (unCookie.getName().equals("ultimoAcceso")) {
fechaUltimoAcceso = unCookie.getValue();
}
}
/* Se comprueba que la variable es igual a vacío, es decir
no hay ningún cookie llamado “ultimoAcceso“, por lo que se
recupera la fecha, y se guarda en un nuevo cookie. */
if (fechaUltimoAcceso.equals(""))
{
Date fechaActual = new Date();
fechaUltimoAcceso = fechaActual.toString();
Cookie cookieFecha = new
Cookie("ultimoAcceso",fechaUltimoAcceso);
cookieFecha.setPath("/");
cookieFecha.setMaxAge(60*60*24);
response.addCookie(cookieFecha);
}
%>
<html>
<head><title>Proceso de login</title>
</head>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 83.

<body>
PROCESO DE IDENTIFICACIÓN

Última vez que accedió a esta
página:
<%=fechaUltimoAcceso%>
<p>
<%
if (request.getParameter("error") != null) {
out.println(request.getParameter("error"));
}
%>
<form action="checklogin.jsp" method="post">
usuario: <input type="text" name="usuario" size="20"
value="<%=usuario%>">

clave: <input type="password" name="clave" size="20">

Recordar mi usuario: <input type="checkbox"
name="recordarUsuario" value="on">

<input type="submit" value="enviar">
</form>
</body>
</html>

El siguiente paso es modificar la página checklogin.jsp que recoge el usuario y clave introducidos
y por lo tanto ahora también la nueva opción de “Recordar mi usuario”. Dentro de la condición
que se cumple si el usuario y la clave son correctos, y después de crear la sesión, escribimos el
código que creará el cookie con el usuario. El primer paso es comprobar que el usuario ha
activado esta opción, es decir, ha seleccionado el checkbox. También se realiza la comprobación
de que el campo “recordarUsuario” no llegue con el valor nulo y produzca un error en la
aplicación, en caso de que el usuario deje sin seleccionar el checkbox:

<%@ page session="true" import="java.util.*"%>
<%
String usuario = "";
String clave = "";
if (request.getParameter("usuario") != null)
usuario = request.getParameter("usuario");
if (request.getParameter("clave") != null)
clave = request.getParameter("clave");
if (usuario.equals("spiderman") &&
clave.equals("librojsp")) {
out.println("checkbox: " +
request.getParameter("recordarUsuario") + "
");
HttpSession sesionOk = request.getSession();
sesionOk.setAttribute("usuario",usuario);
if ((request.getParameter("recordarUsuario") != null) &&
(request.getParameter("recordarUsuario").equals("on")))
{
out.println("entra");
Cookie cookieUsuario = new Cookie
("cokieUsu",usuario);
cookieUsuario.setPath("/");
cookieUsuario.setMaxAge(60*60*24);
response.addCookie(cookieUsuario);
}
/* Se realiza un proceso similar a la creación de cookie de
recordar el usuario. En este caso se trata de crear un nuevo cookie
con el nuevo valor de la fecha y guardarlo con el mismo nombre. De
esta forma será borrado el anterior y prevalecerá el valor del último.
*/
Date fechaActual = new Date();

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 84.

String fechaUltimoAcceso = fechaActual.toString();
Cookie cookieFecha = new
Cookie("ultimoAcceso",fechaUltimoAcceso);
cookieFecha.setPath("/");
cookieFecha.setMaxAge(60*60*24);
response.addCookie(cookieFecha);
%>
<jsp:forward page="menu.jsp" />
<%
} else {
%>
<jsp:forward page="login.jsp">
<jsp:param name="error" value="Usuario y/o clave
incorrectos.
Vuelve a intentarlo."/>
</jsp:forward>
<%
}
%>

EJERCICIOS

1. Crear una aplicación que valide un usuario utilizando una base de datos con el
nombre empleado y una tabla con el nombre usuarios con los campos siguientes: login
y contraseña, Si el usuario es correcto, entonces se creara la sesión que guarde el
login del usuario y se direccionara a una pagina jsp.

2. Crear la pagina jsp donde se re direccionara en el ejercicio #1, la cual permita
validar si existe la sesión, en caso que no exista se direccionara a la pagina de
validación.

3. Realizar los ejercicios anteriores utilizando cookies.

Aplicac

OBJET

Al fina

DESAR

INTRO
Podem
orienta
servlet
HTML y
compa

Los Se
al cont
servlet
Los se
se util
servlet
soporta

UTILI
Los Se
docum
solucio
platafo
Por es
servlet
datos d
de pro
quizás

iones Cliente S

TIVOS

lizar la clase,• Def• Nom• Ide
env

RROLLO

ODUCCIÓN A
mos decir qu
ados a petició
t podría ser
y aplicarle la
ñía.

ervlets son pa
trario que los
ts no tienen i
rvlets pueden
iza para escr
ts se están u
an el API Ser

ZAR SERVLE
ervlets son un

mentos dinám
onan el proble
orma: están d
o se utilizan
t procesando
del pedido o
ocesamiento
 un sistema d

Servidor

INT

, el alumno se
finir los conce
mbrar las tec
ntificar los m

vío de informa

A LOS SERV
ue los Servl
ón-respuesta
responsable
 lógica de ne

ara los servid
s applets, los
nterfase gráf
n ser incluido
ribir Servlets
utilizando am
rvlet.

ETS EN LUGA
n reemplazo
icos que son
ema de hace
desarrollados
 los servlets
o datos POST
 de la tarjeta
de pedidos,

de pago on-li

Cla
TRODUCC

erá capas de
eptos básicos
nologías de J

métodos que e
ación.

LETS
ets son pro
, como los se
de tomar los

egocios utiliza

dores lo que

fico de usuari
os en mucho
s, no asume
mpliamente d

AR DE SCRI
efectivo para
 fáciles de es
r la program

s con el API Ja
para maneja
Teados sobr
 de crédito.
 trabajando
ne.

ase Nº 9
CION A S

:
s de la progra
Java para we
existen en la

ogramas o m
ervidores web
s datos de u
ada para actu

 los applets s

io.
s servidores
nada sobre e

dentro de ser

IPTS CGI!
a los scripts C
scribir y rápid
ación del lad
ava Servlet,
ar peticiones
e HTTP utiliz
Un servlet co
con bases d

T

SERVLETS

amación orien
b y la estruct
 programació

módulos que
b compatible
un formulario
ualizar la bas

son para los

 diferentes po
el entorno o
rvidores HTT

CGI. Proporci
dos en ejecu

do del servido
una extensió
 de cliente H
zando un fo
omo este pod
de datos de

Tec. En Ingeni

S

ntada a objet
tura básica d

ón para el we

e extienden
s con Java. P

o de entrada
se de datos d

navegadores

orque el API
 protocolo de

TP; muchos s

ionan una for
tarse. Los Se

or con APIs e
ón estándard
HTTP. Por eje
ormulario HT
dría ser parte
productos e

ería en Sistem

Página 8

tos.
e éstas.
b, para el

los servidor
Por ejemplo,
 de pedidos
e pedidos de

s. Sin embarg

 Servlet, el q
el servidor. L
servidores W

rma de gene
ervlets tambi

específicos de
de Java.

emplo, tener
ML, incluyen

e de un sistem
 inventarios,

mas

85.

res
un
en

e la

go,

que
Los

Web

rar
ién

e la

un
ndo
ma
, y

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 86.

Otros usos de los Servlets

· Permitir la colaboración entre la gente. Un servlet puede manejar múltiples peticiones
concurrentes, y puede sincronizarlas. Esto permite a los servlets soportar sistemas como
conferencias on-line
· Reenviar peticiones. Los Servlets pueden reenviar peticiones a otros servidores y servlets. Con
esto los servlets pueden ser utilizados para cargar balances desde varios servidores que reflejan
el mismo contenido, y para particionar un único servicio lógico en varios servidores, de acuerdo
con los tipos de tareas o la organización compartida.

¿Qué son los Servlets Java?

Los Servlets son las respuesta de la tecnología Java a la programación CGI. Son programas que
se ejecutan en un servidor Web y construyen páginas Web. Construir páginas Web dinámicas es
útil (y comunmente usado) por un número de razones:
· La página Web está basada en datos envíados por el usuario. Por ejemplo, las páginas
de resultados de los motores de búsqueda se generan de esta forma, y los programas que
procesan pedidos desde sites de comercio electrónico también.
· Los datos cambian frecuentemente. Por ejemplo, un informe sobre el tiempo o páginas de
cabeceras de noticias podrían construir la página dinámicamente, quizás devolviendo una página
previamente construida y luego actualizándola.
· Las páginas Web que usan información desde bases de datos corporativas u otras
fuentes. Por ejemplo, usaríamos esto para hacer una página Web en una tienda on-line que
liste los precios actuales y el número de artículos en stock.

¿Cuáles son las Ventajas de los Servlets sobre el CGI "Tradicional"?

Los Servlets Java son más eficientes, fáciles de usar, más poderosos, más portables, y más
baratos que el CGI tradicional y otras muchas tecnologías del tipo CGI.
· Eficiencia. Con CGI tradicional, se arranca un nuevo proceso para cada solicitud HTTP. Si el
programa CGI hace una operación relativamente rápida, la sobrecarga del proceso de arrancada
puede dominar el tiempo de ejecución. Con los Servlets, la máquina Virtual Java permanece
arrancada, y cada petición es manejada por un thread Java de peso ligero, no un pesado
proceso del sistema operativo. De forma similar, en CGI tradicional, si hay N peticiones
simultáneas para el mismo programa CGI, el código de este problema se cargará N veces en
memoria. Sin embargo, con los Servlets, hay N threads pero sólo una copia de la clase Servlet.
Los Servlet también tienen más alternativas que los programas normales
CGI para optimizaciones como los caches de cálculos previos, mantener abiertas las conexiones
de bases de datos, etc.
· Conveniencia.¿Por qué aprender otro lenguaje? Junto con la conveniencia de poder utilizar un
lenguaje familiar, los Servlets tienen una gran infraestructura para análisis automático y
decodificación de datos de formularios HTML, leer y seleccionar cabeceras HTTP, manejar
cookies, seguimiento de sesiones, y muchas otras utilidades.
· Potencia. Los Servlets Java nos permiten fácilmente hacer muchas cosas que son difíciles o
imposibles con CGI normal.Por algo, los servlets pueden hablar directamente con el servidor
Web. Esto simplifica las operaciones que se necesitan para buscar imágenes y otros datos
almacenados en situaciones estándard. Los Servlets también pueden compartir los datos entre
ellos, haciendo las cosas útiles como almacenes de conexiones a bases de datos fáciles de
implementar. También pueden mantener información de solicitud en solicitud, simplicando cosas
como seguimiento de sesión y el caché de cálculos anteriores.

· Portable. Los Servlets están escritos en Java y siguen un API bien estandarizado.
Consecuentemente, los servlets escritos, digamos en el servidor I-Planet Enterprise, se pueden
ejecutar sin modificarse en Apache, Microsoft IIS, o WebStar. Los Servlets están soportados
directamente o mediante plug-in en la mayoría de los servidores Web.
· Barato. Hay un número de servidores Web gratuitos o muy baratos que son buenos para el
uso "personal" o el uso en sites Web de bajo nivel. Sin embargo, con la excepción de Apache,
que es gratuito, la mayoría de los servidores Web comerciales son relativamente caros. Una vez

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 87.

que tengamos un servidor Web, no importa el coste del servidor, añadirle soporte para Servlets
(si no viene preconfigurado para soportarlos) es gratuito o muy barato.

¿Dónde puedo ejecutar Servlets y qué necesito?

En la actualidad la mayoría de servidores web tanto comerciales como de licencia libre tienen la
capacidad de ejecutar servlets a través de plug-ins o módulos. A continuación señalaremos unos
cuantos:

_ Apache web server
_ Nestcape FastTrack 2.0
_ Microsoft IIS
_ WebLogic
_ Lotus Domino Go Web Server
_ IBM Interner Conexión Server
_ Java Web Server

Con respecto a este último cabe destacar que ejecuta servlets de forma nativa sin necesidad de
módulos adicionales. Señalaremos dos módulos de ejecución de servlets Allaire´s JRun y Jakarta
Tomcat ambos gratuitos y descargables desde su página web si no es para usos comerciales.
Como dato adicional el JSDK 2.1 incluye una herramienta llamada servletrunner análoga a
appletviewer para la ejecución y depuración de servlet con unas capacidades muy limitadas por
lo que solo se debe usar para comprobar la exactitud del servlet.

Estructura de un servlet
El API Servlet consiste básicamente en dos paquetes:

·javax.servlet En este paquete se definen 6 interfaces y 3 clases para la implementación de
servlets genéricos, sin especificación de protocolo. Hoy en dia no tienen utilidad práctica más
que para servir de base en la jerarquía de clases de los servlets.
Conforme pase el tiempo se supone que constituirán la base para la implementación de otros
protocolos distintos de http.

·javax.servlet.http Ofrece la implementación especifica de servlets para el protocolo http. En
estos paquetes se definen todas las clases e interfaces necesarias para la escritura de applets.
De hecho cuando se usen los servlets para gestionar conexiones http
usaremos las clases del paquete javax.servlet.http.

El ciclo de ejecución de un servlet es análogo al de un applet con ligeras diferencias.
Inicialmente el servlet debe extender a la clase HttpServlet:

import javax.servlet;
import javax.servlet.*;
import javax.servlet.http.*;
public class MiServlet extends HttpServlet{
....
}

Para dotar de funcionalidad a un servlet se han de redefinir una seria de métodos que guardan
una analogía con los métodos de funcionamiento de un applet (init(), start(), stop(),
destroy()). public void init(ServletConfig config)

Cada vez que se inicia el servlet el servidor web llama a este método pasando un parámetro de
la clase ServletConfig que guarda información de la configuración del servlet y del contexto del
servidor web en el que se ejecuta. A través de ServletConfig se accede a los parámetros de
inicialización del servlet que se establecieron al configurar el servlet y a través de la interfaz
ServletContext (obtenido a partir del método getServletContext() de ServletConfig) se
accede a la información del servidor web.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 88.

El siguiente es un ejemplo simple de un servlet que escribe información en un fichero de registro
(el formato, ubicación y nombre de este es dependiente del servidor web):

MiServlet.java
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
public class MiServlet extends HttpServlet{
public void init(ServletConfig config)
{ config.getServletContext().log(“Iniciado MiServlet a las” +new Date()); }
}

En este método se han de realizar todas las operaciones únicas en el ciclo de vida del servlet tal
como conexión a BD de forma persistente y otras tareas de inicialización. Dado que el servlet se
carga en memoria al iniciar el servidor web o al recibir la primera petición (dependiendo de la
configuración) el método init() es llamado solo una vez, no cada vez que se realice una petición.

· public void destroy()
Este método es análogo al método init() solo que será llamado por el servidor web cuando el
servlet esta a punto de ser descargado de memoria (no cuando termina una petición). En este
método se han de realizar las tareas necesarias para conseguir una finalización apropiada como
cerrar archivos y flujos de entrada de salida externos a la petición, cerrar conexiones
persistentes a bases de datos, etc. Un punto importante es que se puede llamar a este método
cuando todavía esta ejecutándose alguna petición por lo que podría producirse un fallo del
sistema y una inconsistencia de datos tanto en archivos como en BD. Por eso debe retrasarse la
desaparición del servlet hasta que todas las peticiones hayan sido concluidas.

· public void service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException.
En este metodo se encuentra la mayor parte de la funcionalidad del servlet. Cada vez que se
realice una petición se llamará a este metodo pasándole dos parámetros que nos permite
obtener información de la petición y un flujo de salida para escribir la respuesta.

COMUNICACIÓN CON EL CLIENTE (USUARIO).
Como se explicó anteriormente, los Servlets se han usado más en la generación de paginas web
dinámicas, y cuando se habla de dinamismo se refiere a dinamismo en la información no en la
interfaz.En la figura siguiente se muestra como se establece la comunicación entre el Cliente y el
Servidor, en un ambiente de Web, por medio de la Tecnología de Java Servlets.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 89.

PROGRAMACION CON JAVA SERVLETS.
Interación con el Cliente
Cuando un servlet acepta una llamada de un cliente, recibe dos objetos:

_ Un ServletRequest, que encapsula la comunicación desde el cliente al servidor.
_ Un ServletResponse, que encapsula la comunicación de vuelta desde el servlet hacia el
cliente.

ServletRequest y ServletResponse son interfaces definidos en el paquete javax.servlet.

El Interface ServletRequest
El Interface ServletRequest permite al servlet acceder a:
Información como los nombres de los parámetros pasados por el cliente, el protocolo (esquema)
que está siendo utilizado por el cliente, y los nombres del host remote que ha realizado la
petición y la del server que la ha recibido.
El stream de entrada, ServletInputStream. Los Servlets utilizan este stream para obtener los
datos desde los clientes que utilizan protocolos como los métodos POST y PUT del HTTP.
Los interfaces que extienden el interface ServletRequest permiten al servlet recibir más datos
específicos del protocolo. Por ejemplo, el interface HttpServletRequest contiene métodos para
acceder a información de cabecera específica HTTP.

El Interface ServletResponse
El Interface ServletResponse le da al servlet los métodos para responder al cliente.
Permite al servlet seleccionar la longitud del contenido y el tipo MIME de la respuesta.
Proporciona un stream de salida, ServletOutputStream, y un Writer a través del cual el
servlet puede responder datos.

Los interfaces que extienden el interface ServletResponse le dan a los servlets más
capacidades específicas del protocolo. Por ejemplo, el interface HttpServletResponse contiene
métodos que permiten al servlet manipular información de cabecera específica HTTP.
Un Servlet HTTP maneja peticiones del cliente a través de su método service. Este método
soporta peticiones estándard de cliente HTTP despachando cada petición a un método designado
para manejar esa petición. Por ejemplo, el método service llama al método
doGet mostrado en el siguiente ejemplo:

public class SimpleServlet extends HttpServlet
{
/**
* Maneja el método GET de HTPP para construir una sencilla página Web.
*/
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
PrintWriter out;
String title = "Salida de un Servlet Sencillo";
// primero selecciona el tipo de contenidos y otros campos de cabecera de la respuesta
response.setContentType("text/html");
// Luego escribe los datos de la respuesta
out = response.getWriter();
out.println("<HTML><HEAD><TITLE>");
out.println(title);
out.println("</TITLE></HEAD><BODY>");
out.println("<H1>" + title + "</H1>");
out.println("<P>This is output from SimpleServlet.");
out.println("</BODY></HTML>");
out.close();
}//Fin del Método doGet
}//Fin de la clase SimpleServlet

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 90.

Del ejemplo anterior, SimpleServlet extiende la clase HttpServlet, que implementa el
interface Servlet.
SimpleServlet sobreescribe el método doGet de la clase HttpServlet. Este método es llamado
cuando un cliente hace un petición GET (el método de petición por defecto de HTTP), y resulta
en una sencilla página HTML devuelta al cliente.

Dentro del método doGet

_La petición del usuario está representada por un objeto HttpServletRequest.
_ La respuesta al usuario esta representada por un objeto HttpServletResponse.

Como el texto es devuelto al cliente, el respuesta se envía utilizando el objeto Writer obtenido
desde el objeto HttpServletResponse.

Peticiones y Respuestas
Como se explico en el apartado anterior los métodos de la clase HttpServlet que manejan
peticiones de cliente toman dos argumentos:

_ Un objeto HttpServletRequest, que encapsula los datos desde el cliente.
_ Un objeto HttpServletResponse, que encapsula la respuesta hacia el cliente.

Objetos HttpServletRequest
Un objeto HttpServletRequest proporciona acceso a los datos de cabecera HTTP, como
cualquier cookie encontrada en la petición, y el método HTTP con el que se ha realizado la
petición. El objeto HttpServletRequest también permite obtener los argumentos que el
cliente envía como parte de la petición.

Para acceder a los datos del cliente
El método getParameter devuelve el valor de un parámetro nombrado. Si nuestro parámetro
pudiera tener más de un valor, deberíamos utilizar getParameterValues en su lugar. El
método getParameterValues devuelve un array de valores del parámetro nombrado. (El
método getParameterNames proporciona los nombres de los parámetros.

Manejar Peticiones GET y POST
Para manejar peticiones HTTP en un servlet, extendemos la clase HttpServlet y sobrescribimos
los métodos del servlet que manejan las peticiones HTTP que queremos soportar. Este apartado
ilustra el manejo de peticiones GET y POST. Los métodos que manejan estas peticiones son
doGet y doPost.

_ Manejar Peticiones GET
Manejar peticiones GET implica sobreescribir el método doGet. El siguiente ejemplo muestra a
BookDetailServlet haciendo esto.
Los métodos explicados en Peticiones y Respuestas se muestran en negrita:

public class BookDetailServlet extends HttpServlet
{
public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
// selecciona el tipo de contenido en la cabecera antes de acceder a Writer
response.setContentType("text/html");
PrintWriter out = response.getWriter();
// Luego escribe la respuesta
out.println("<html>" +
"<head><title>Book Description</title></head>" +
...);
//Obtiene el identificador del libro a mostrar
String bookId = request.getParameter("bookId");

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 91.

if (bookId != null)
{
// Obtiene la información sobre el libro y la imprime
...
}
out.println("</body></html>");
out.close();
}
... }

_ Manejar Peticiones POST
Manejar peticiones POST implica sobreescribir el método doPost. El siguiente ejemplo muestra a
ReceiptServlet haciendo esto.
Nuevamente, los métodos explicados en Peticiones y Respuestas se muestran en negrita:
public class ReceiptServlet extends HttpServlet
{
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
...
// selecciona la cabecera de tipo de contenido antes de acceder a Writer
response.setContentType("text/html");
PrintWriter out = response.getWriter();
// Luego escribe la respuesta
out.println("<html>" +
"<head><title> Receipt </title>" +
...);
out.println("<h3>Thank you for purchasing your books from us " +
request.getParameter("cardname") +
...);
out.close();
}
...
}

El servlet extiende la clase HttpServlet y sobreescribe el método doPost. Dentro del método
doPost, el método getParameter obtiene los argumentos esperados por el servlet.
Para responder al cliente, el método doPost utiliza un Writer del objeto HttpServletResponse
para devolver datos en formato texto al cliente. Antes de acceder al writer, el ejemplo selecciona
la cabecera del tipo de contenido. Al final del método doPost, después de haber enviado la
respuesta, el Writer se cierra.

Manejar Datos de Formularios

Si alguna vez has usado un motor de búsqueda Web, visitado un tienda de libros on-line, etc.,
probablemente habrás encontrado URLs de búsqueda con varios parámetros como:
http://host/path?user=Marty+Hall&origin=bwi&dest=lax.
La parte posterior a la interrogación (user=Marty+Hall&origin=bwi&dest=lax) es conocida
como datos de formulario, y es la forma más común de obtener datos desde una página Web
para un programa del lado del servidor. Puede añadirse al final de la URL después de la
interrogación (como arriba) para peticiones GET o enviada al servidor en una línea separada,
para peticiones POST.
Extraer la información necesaria desde estos datos de formulario es tradicionalmente una de las
partes más tediosas de la programación CGI.

1. Primero de todo, tenemos que leer los datos de una forma para las peticiones GET (en CGI
tradicional, esto se hace

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 92.

mediante QUERY_STRING), y de otra forma para peticiones POST (normalmente leyendo la
entrada estándard).

2. Segundo, tenemos que separar las parejas de los ampersands (&), luego separar los nombres
de los parámetros (a la izquierda de los signos igual) del valor del parámetro (a la derecha de
los signos igual).

3. Tercero, tenemos que decodificar los valores. Los valores alfanuméricos no cambian, pero los
espacios son convertidos a signos más y otros caracteres se convierten como %XX donde XX es
el valor ASCII (o ISO Latin-1) del carácter, en hexadecimal.
Por ejemplo, si alguien introduce un valor de "~hall, ~gates, y ~mcnealy" en un campo de texto
con el nombre "users" en un formulario HTML, los datos serían enviados como
"users=%7Ehall%2C+%7Egates%2C+y+%7Emcnealy".

4. Finalmente, la cuarta razón que hace que el análisis de los datos de formulario sea tedioso es
que los valores pueden ser omitidos (por ejemplo, param1=val1¶m2=¶m3=val3) y
un parámetro puede tener más de un valor y que el mismo parámetro puede aparecer más de
una vez (por ejemplo: param1=val1¶m2=val2¶m1=val3).

Una de las mejores características de los servlets Java es que todos estos análisis de formularios
son manejados automáticamente.
Simplemente llamamos al método getParameter de HttpServletRequest, y suministramos el
nombre del parámetro como un argumento. Observa que los nombres de parámetros son
sensibles a la mayúsculas. Hacemos esto exactamente igual que cuando los datos son enviados
mediante GET o como si los enviaramos mediante POST. El valor de retorno es un String
correspondiente al valor de la primera ocurrencia del parámetro. Se devuelve un String vacío si
el parámetro existe pero no tiene valor, y se devuelve null si no existe dicho parámetro. Si el
parámetro pudiera tener más de un valor, como en el ejemplo anterior, deberíamos llamar a
getParameterValues en vez de a getParameter. Este devuelve un array de strings.
Finalmente, aunque en aplicaciones reales nuestros servlets probablemente tengan un conjunto
específico de nombres de parámetros por los que buscar. Usamos getParameterNames para
esto, que devuelve una Enumeration, cada entrada puede ser forzada a String y usada en una
llamada a getParameter.

Ejemplo: Leer Tres Parámetros
Aquí hay un sencillo ejemplo que lee tres parámetros llamados param1, param2, y param3,
listando sus valores en una lista marcada.

Observamos que, aunque tenemos que especificar selecciones de respuesta (content type,
status line, otras cabeceras HTTP) antes de empezar a generar el contenido, no es necesario que
leamos los parámetros de petición en un orden particular.

También observamos que podemos crear fácilmente servlets que puedan manejar datos GET y
POST, simplemente haciendo que su método doPost llame a doGet o sobreescribiendo service
(que llama a doGet, doPost, doHead, etc.). Esta es una buena práctica estándard, ya que
requiere muy poco trabajo extra y permite flexibilidad en el lado del cliente.

TresParametros.java
Nota: este ejemplo también usa la clase Utilidad.java.

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.io.*;
public class TresParametros extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{ response.setContentType("text/html");

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 93.

PrintWriter out = response.getWriter();
String title = "Lectura de Tres parámetros";
out.println(Utilidad.headConTitle(title) +
"<BODY>\n" +
"<H1 ALIGN=CENTER>" + title + "</H1>\n" +
"\n" +
" param1: "
+ request.getParameter("param1") + "\n" +
" param2: "
+ request.getParameter("param2") + "\n" +
" param3: "
+ request.getParameter("param3") + "\n" +
"\n" +
"</BODY></HTML>");
}
public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
doGet(request, response);
}
}

Aplicac

OBJET

Al fina

PROC

DIFER

La tec
portab
Java i
lengua
el siste
dinámi

Otra d
rendim
los es
parte d
en la
desac

El Http
datos
que no
(Conte
PrintW
esfuerz
las cla
y javax

Un Se
Aquí te
más us
Ejemp
import
import
import
public
{
public
HttpSe
throws
{
PrintW

iones Cliente S

TIVOS

lizar la Prácti• Con
Ser• Con• Util• Cre• Cre
info

EDIMIENTO

RENCIAS EN

cnología Ser
bilidad (“wri
igual que cu
aje. Esto es a
ema operativ
ica de errores

e las princip
miento, y esto
necesario car
de los cliente
 memoria
tiva. De esta

pServletReq
de un FORM

os permiten e
ent-Type, Se

Writer usado p
zo se gasta e
ses de los pa
x.servlet.http

ncillo Servle
enemos un s
sual donde se
plo1.java
t java.io.*;
t javax.servle
t javax.servle
class Ejemplo

void service(
ervletRespons
s ServletExce

Writer out = re

Servidor

ca, el estudia
nocer la jerar
rvlets de Java
nocer la estru
izar HTML en

ear formulario
ear Clases de
ormación (doG

NTRE LAS TE

rvlet propor
ite once, run
alquier otra,

algo de lo qu
vo del servido
s en tiempo d

ales ventajas
o a pesar de q
rgar los prog

es, los servle
del servido

a manera se

quest tiene m
, cabeceras
especificar lín
et-Cookie, et
para envíar la
en sentencia
aquetes java.
p (para HttpS

et que Gene
servlet que s
e generará H

et.*;
et.http.*;
o1extends Ht

(HttpServletR
se response)
ption, IOExce

esponse.getW

Guía P
Serv

ante será cap
rquía de clase
a.
uctura básica
n programas d
os en HTML q
 Java servlets
Get y doPost

ECNOLOGÍAS

rciona las m
n anywhere”)
, y por tanto
e carecen los
or y no dispo
de ejecución.

s de los serv
que Java no
gramas CGI
ets, una vez
or hasta qu
minimiza en

métodos que
de petición H

neas de respu
tc.), y, tod
a salida de vu
s println que
.io (para Prin

ServletReques

era Texto No
sólo genera t
TML.

ttpServlet

Request reque

eption

Writer();

Práctica N
lets Básic

paz de:
es y paquetes

 de programa
de Java.

que envíen pa
s que utilicen
)

S CGI Y SER

mismas venta
 y segurida

o tiene en e
s programas
onen en muc

vlets con res
 es un lengua
 tantas veces
que son llam

ue el progr
gran medida

e nos permite
HTTP, etc. E
uesta HTTP (
avía más im

uelta al client
e generan la
ntWriter, etc.
st y HttpServ

ormal
texto normal

est,

T

No 9
co

s utilizados p

as Java Servl

arámetros a s
n los métodos

RVLET

ajas del len
ad, ya que u
se sentido to
s CGI, ya qu
chos casos de

specto a los
aje particular
s como petici

mados por pri
rama que c
 el tiempo de

en encontrar
l HttpServle
200, 404, et
mportante,
te. Para servl
 página dese
), javax.serv

vletResponse)

. La siguient

Tec. En Ingeni

ara la implem

ets.

servlets de ja
s en envió y r

nguaje Java
n servlet es
odas las car

ue hay que co
e técnicas de

 programas
rmente rápido
ones de serv
mera vez, qu
controla el
e respuesta.

 información
etResponse
tc.), cabecera
nos permite
ets sencillos,

eada Tenemo
vlet (para Htt
).

te sección m

ería en Sistem

Página 9

mentación de

ava.
recepción de

a en cuanto
s una clase
racterísticas d
ompilarlos pa
e comprobaci

 CGI, es la d
o. Mientras q

vicio existan p
uedan activ
l servidor l

 entrante com
 tiene métod
as de respues
en obtener
, la mayoría d
os que import
tpServlet, etc

ostrará el ca

mas

94.

 a
 de
del
ara
ión

del
que
por
vos
los

mo
dos
sta
un
del
tar
c.),

aso

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 95.

out.println("Este es mi Primer Servlet en Programación IV");
}
}

Un Servlet que Genera HTML

La mayoría de los servlets generan HTML, no texto normal como el ejemplo anterior. Para hacer
esto, necesitamos dos pasos adicionales, decirle al navegador que estamos devolviendo HTML. y
modificar la sentencia println para construir una página Web legal.

El primer paso se hace configurando la cabecera de respuesta Content-Type. En general, las
cabeceras de respuesta se configuran mediante el método setHeader de ttpServletResponse,
pero seleccionar el tipo de contenido es una tarea muy común y por eso tiene un método
especial setContentType sólo para este propósito. Observa que necesitamos configurar las
cabeceras de respuesta antes, de devolver algún contenido mediante PrintWriter. Aquí hay un
ejemplo:

Ejemplo2.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Ejemplo2 extends HttpServlet
{
public void service(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 " +
"Transitional//EN\">\n" +
"<HTML>\n" +
"<HEAD><TITLE>Programación IV</TITLE></HEAD>\n" +
"<BODY>\n" +
"<center><H1>Ejemplo No 2 de Java Servlets</H1></center>\n" +
"</BODY></HTML>");
}
}
La línea DOCTYPE es técnicamente requerida por la especificación HTML, y aunque la mayoría de
los navegadores Web la ignoran, es muy útil cuando se envían páginas a validadores de formato
HTML. Estos validadores comparan la sintaxis HMTL de las páginas comparándolas con la
especificación formal del HTML, y usan la línea DOCTYPE para determinar la versión de HTML con
la que comparar.

En muchas páginas web, la línea HEAD no contiene nada más que el TITLE, aunque los
desarrolladores avanzados podrían querer incluir etiquetas META y hojas de estilo. Pero para el
caso sencillo, crearemos un método que crea un título y devuelve las entradas DOCTYPE, HEAD,
y TITLE como salida. Aquí está el código:

Utilidad.java
public class Utilidad
{
public static final String DOCTYPE = "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0
Transitional//EN\">";
public static String headConTitle(String title)
{
return(DOCTYPE + "\n" +
"<HTML>\n" +

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 96.

"<HEAD><TITLE>" + title + "</TITLE></HEAD>\n");
}
}

Aquí tenemos un nuevo ejemplo que instancia a la Clase Utilidad:
Ejemplo3.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Ejemplo3 extends HttpServlet
{
public void service(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println(Utilidad.headConTitle("Ejemplo Utilizando dos Clases") +
"<BODY>\n" +
"<H1>Este es el Ejemplo No. 3</H1>\n" +
"</BODY></HTML>");
}
}
METODO SERVICE.
public void service(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException.
En este método se encuentra la mayor parte de la funcionalidad del servlet. Cada vez que se
realice una petición se llamará a este método pasándole dos parámetros que nos permite
obtener información de la petición y un flujo de salida para escribir la respuesta.

Análogamente tenemos otra serie de métodos que realizan la implementación de respuesta a
métodos de comunicación del protocolo http 1.1 como son GET y POST. Estos son
respectivamente:

_ public void doGet(HttpServletRequest request, HttpServletResponse response)
_ public void doPost(HttpServletRequest request, HttpServletResponse response)

Los dos parámetros que recibe service() son esenciales para el funcionamiento del servlet por
lo que pasaremos a verlos con mas profundidad:

Los dos parámetros que recibe service() son HttpservletRequest y HttpServletResponse

HttpServletRequest
Esta interfaz derivada de ServletRequest proporciona los métodos para recuperar la
información de la petición del usuario asi como del propio usuario. Señalaremos los más
importantes:

_ public abstract String getRemoteHost(). Devuelve el nombre del ordenador que realizó la
petición
_ public abstract String getParameter(String parameter). Devuelve el valor del parámetro
parameter o null si dicho parámetro no existe.
_ public abstract String[] getParameterValues(String parameter). Devuelve un array con
los valores del parámetro especificado por parameter o null si dicho parámetro no existe.
_ public abstract Enumeration getParameterNames(). Devuelve una Enumeration de los
nombre de los parametros empleados en la petición.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 97.

HttpServletResponse
Se trata de un interfaz derivada de ServletResponse que proporciona los métodos para realizar
la respuesta al cliente que originó la petición. Señalaremos los más importantes:

public abstract PrintWriter getWriter(). Permite obtener un objeto PrintWriter para escribir
la respuesta.
public abstract setContentType(String). Permite establecer el tipo MIME de la respuesta

EJEMPLOS DE SERVLETS CON LECTURA DE PARAMETROS
A continuación realizaremos un sencillo de ejemplo de un servlet que recibirá como parámetro
un nombre y saludará al cliente que realizo la petición. Para ello construiremos una página web
con un formulario que nos servirá para enviar la petición al servlet.

<html>
<head> <title>Ejemplo de servlet con Parametros</title> </head>
<body>
<h1>Introduzca su nombre y pulse el botón de enviar</h1><hr>
<FORM ACTION="/servlet/HolaServlet" METHOD="post">
Nombre:<INPUT TYPE="text" NAME="nombre" size="30">
<INPUT TYPE="submit" NAME="enviar" VALUE="Enviar">
</form>
</body>
</html>
A continuación se muestra el codigo del servlet. Este codigo fuente se compilaría y se situaría en
el directorio configurado en el servido web para la ejecución de servlets(en nuestro caso sera
/servlet):

HolaServlet.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class HolaServlet extends HttpServlet
{
/*
* En este caso se ha optado por redefinir el metodo doPost(), pudiéndose
* igualmente haberse optado por redefinir service().Lo que seria incorrecto
* es redefinir doGet() ya que la petición se realizará por el método post
*/
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException
{
//Se obtiene el valor del parametro enviado
String name = request.getParameter("nombre");
//Se establece el contenido MIME de la respuesta
response.setContentType("text/html");
//Se obtiene un flujo de salida para la respuesta
PrintWriter out;
out = response.getWriter();
//Se escribe la respuesta en HTML estandar
out.println("<html>");
out.println("<head>");
out.println("<title> Respuesta de HolaServlet</title>");
out.println("<head>");
out.println("<body>");
out.println("<h1>El servlet ha generado la pagina de Respuesta</h1><hr>");
out.println("
");
out.println("");
out.println("<h2>Hola " + name + "</h2>");

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 98.

out.println("");
out.println("</body>");
out.println("</html>");
// Se fuerza la descarga del buffer y Se cierra el canal
out.flush();
out.close();
} //fin doPost()
}//fin clase

Ejemplo 2 usando formularios de HTML.
El formulario contendrá dos campos de tipo TEXT donde el visitante introducirá su nombre y
apellidos. A continuación, deberá indicar la opinión que le merece la página visitada eligiendo
una entre tres posibles (Buena, Regular y Mala), Por último, se ofrece al usuario la posibilidad
de escribir un comentario si así lo considera oportuno.

El código correspondiente a la página HTML que contiene este formulario es el siguiente:
<HTML>
<HEAD>
<TITLE>Envíe su opinión</TITLE>
</HEAD>
<BODY>
<H2>Por favor, envíenos su opinión acerca de este sitio web</H2>
<FORM ACTION="/servlet/ServletOpinion" METHOD="POST">
Nombre: <INPUT TYPE="TEXT" NAME="nombre" SIZE=15>

Apellidos: <INPUT TYPE="TEXT" NAME="apellidos" SIZE=30><P>
Opinión que le ha merecido este sitio web

<INPUT TYPE="RADIO" CHECKED NAME="opinion" VALUE="Buena">Buena

<INPUT TYPE="RADIO" NAME="opinion" VALUE="Regular">Regular

<INPUT TYPE="RADIO" NAME="opinion" VALUE="Mala">Mala<P>
Comentarios

<TEXTAREA NAME="comentarios" ROWS=6 COLS=40>
</TEXTAREA><P>
<INPUT TYPE="SUBMIT" NAME="botonEnviar" VALUE="Enviar">
<INPUT TYPE="RESET" NAME="botonLimpiar" VALUE="Limpiar">
</FORM>
</BODY>
</HTML>
El servlet que gestionará toda la información del formulario se llamará ServletOpinion. Este
servlet se limitará a responder al usuario con una página HTML con la información introducida en
el formulario, dejando para un posterior apartado el estudio de cómo se almacenarían dichos
datos. El código fuente de la clase ServletOpinion es el siguiente:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class ServletOpinion extends HttpServlet
{
// Declaración de variables miembro correspondientes a
// los campos del formulario
private String nombre=null;
private String apellidos=null;
private String opinion=null;
private String comentarios=null;
// Este método se ejecuta una única vez (al ser inicializado el servlet)
// Se suelen inicializar variables y realizar operaciones costosas en
// tiempo de ejecución (abrir ficheros, bases de datos, etc)
public void init(ServletConfig config) throws ServletException

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 99.

{
// Llamada al método init() de la superclase (GenericServlet)
// Así se asegura una correcta inicialización del servlet
super.init(config);
System.out.println("Iniciando ServletOpinion...");
} // fin del método init()
// Este método es llamado por el servidor web al "apagarse" (al hacer
// shutdown). Sirve para proporcionar una correcta desconexión de una
// base de datos, cerrar ficheros abiertos, etc.
public void destroy()
{
System.out.println("No hay nada que hacer...");
} //fin del método destroy()
// Método llamado mediante un HTTP POST. Este método se llama
// automáticamente al ejecutar un formulario HTML
public void doPost (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException
{
// Adquisición de los valores del formulario a través del objeto req
nombre=req.getParameter("nombre");
apellidos=req.getParameter("apellidos");
opinion=req.getParameter("opinion");
comentarios=req.getParameter("comentarios");
// Devolver al usuario una página HTML con los valores adquiridos
devolverPaginaHTML(resp);
} // fin del método doPost()
public void devolverPaginaHTML(HttpServletResponse resp)
throws ServletException, IOException
{
// En primer lugar se establece el tipo de contenido MIME de la respuesta
resp.setContentType("text/html");
// Se obtiene un PrintWriter donde escribir (sólo para mandar texto)
PrintWriter out = null;
out=resp.getWriter();
// Se genera el contenido de la página HTML
out.println("<html>");
out.println("<head>");
out.println("<title>Valores recogidos en el formulario</title>");
out.println("</head>");
out.println("<body>");
out.println("Valores recogidos del ");
out.println("formulario: ");
out.println("<p>Nombre: "+nombre+"");
out.println("
<fontsize=+1>Apellido: "+
apellidos+"");
out.println("<p> Opinión: <i>" + opinion +
"</i>");
out.println("
Comentarios: " + comentarios +
"");
out.println("</body>");
out.println("</html>");
// Se fuerza la descarga del buffer y se cierra el PrintWriter,
// liberando recursos de esta forma. IMPORTANTE
out.flush();
out.close();
} // fin de devolverPaginaHTML()
// Función que permite al servidor web obtener una pequeña descripción del
// servlet, qué cometido tiene, nombre del autor, comentarios
// adicionales, etc.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 100.

public String getServletInfo()
{
return "Este servlet lee los datos de un formulario" +
" y los muestra en pantalla";
} // fin del método getServletInfo()
}

Ejemplo 3: Listar todos los Datos del Formulario
Aquí hay un ejemplo que busca todos los nombres de parámetros que fueron enviados y los
pone en una tabla. Ilumina los parámetros que tienen valor cero así como aquellos que tienen
múltiples valores. Primero busca todos los nombres de parámetros mediante el método
getParameterNames de HttpServletRequest. Esto devuelve una Enumeration. Luego, pasa
por la Enumeration de la forma estándard, usando hasMoreElements para determinar cuando
parar y usando nextElement para obtener cada entrada. Como nextElement devuelve un
Object, fuerza el resultado a String y los pasa a getParameterValues, obteniendo un array
de Strings. Si este array sólo tiene una entrada y sólo contiene un string vacío, el parámetro no
tiene valores, y el servlet genera una entrada "No Value" en itálica. Si el array tiene más de una
entrada, el parámetro tiene múltiples valores, y se muestran en una lista bulleteada. De otra
forma, el único valor principal se sitúa en la tabla.

MostrarParametros.java
Nota: este servlet también usa Utilidad.java, mostrado en la guía anterior.
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
/** Muestra todos los parámetros vía
* GET o POST. Especialmente los que no poseen valor o que poseen
* valores Multiples.
*/
public class MostrarParametros extends HttpServlet
{
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Reading All Request Parameters";
out.println(Utilidad.headConTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</H1>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n" +
"<TR BGCOLOR=\"#FFAD00\">\n" +
"<TH>Parameter Name<TH>Parameter Value(s)");
Enumeration paramNames = request.getParameterNames();
while(paramNames.hasMoreElements())
{
String paramName = (String)paramNames.nextElement();
out.println("<TR><TD>" + paramName + "\n<TD>");
String[] paramValues = request.getParameterValues(paramName);
if (paramValues.length == 1)
{
String paramValue = paramValues[0];
if (paramValue.length() == 0)
out.print("<I>No Value</I>");
else
out.print(paramValue);
}
else

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 101.

{
out.println("");
for(int i=0; i<paramValues.length; i++) {
out.println("" + paramValues[i]);
}
out.println("");
}//fin del while
}
out.println("</TABLE>\n</BODY></HTML>");
}//Fin de doGet
public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
doGet(request, response);
}
}
Aquí tenemos un formulario HTML que envía un número de parámetros a este servlet.
Usa POST para enviar los datos (como deberían hacerlo todos los formularios que tienen
entradas PASSWORD), demostrando el valor de que los servlets incluyan tanto doGet como
doPost.
EnviarParametros.html
<HTML>
<HEAD> <TITLE>A Sample FORM using POST</TITLE> </HEAD>
<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Un Ejemplo de Formulario Utilizando POST</H1>
<hr color="#800000" size="3">
<p>
<FORM ACTION="/servlet/MostrarParametros" METHOD="POST">
Código de Producto: <INPUT TYPE="TEXT" NAME="itemNum" size="20">

Cantidad: <INPUT TYPE="TEXT" NAME="quantity" size="20">

Precio Unitario: <INPUT TYPE="TEXT" NAME="price" VALUE="$" size="20">

<HR>
Nombre: <INPUT TYPE="TEXT" NAME="firstName" size="20">

Apellido: <INPUT TYPE="TEXT" NAME="lastName" size="20">

Iniciales: <INPUT TYPE="TEXT" NAME="initial" size="20">

Dirección: <TEXTAREA NAME="address" ROWS=3 COLS=40></TEXTAREA>

Tarjeta de Crédito:

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Visa">Visa

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Master Card">Master Card

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Amex">American Express

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Discover">Discover

<INPUT TYPE="RADIO" NAME="cardType" VALUE="Java SmartCard">Java SmartCard

Número de Tarjeta de Crédito:
<INPUT TYPE="PASSWORD" NAME="cardNum" size="20">

Repita el Número de Tarjeta de Crédito:
<INPUT TYPE="PASSWORD" NAME="cardNum" size="20">

<CENTER>
<INPUT TYPE="submit" VALUE="Ordenar">
</CENTER>
</FORM>
</BODY>
</HTML>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 102.

EJERCICIOS

1. Crear una clase “Encabezado” cuyos métodos puedan ser Utilizados por otras clases. El
objetivo es que la clase Encabezado contenga un método que reciba como parámetros el Titulo y
el Mensaje de Encabezado y pueda generar el HTML respectivo.

2. Escribir una clase “Mensajes” cuyos métodos puedan ser utilizados por otras clases. La clase
debe retornar un Mensaje en HTML con una imagen, es decir, poseerá un método que reciba
como parámetros el mensaje, y un tipo de mensaje por medio del cual de desplegara una
imagen diferente.

Aplicac

OBJET

Al finaliz

DESAR

La API
indepe
menud
Conne

El API
progra
de da
progra
RDBMS

En la
datos
DB2, I
PostGr

Aun as
llamad
por Mic
ya que
ultimo

El paq
Consta
import

Driver
Se trat
sumini
y desc
localiza
En tod

jdbc:<

Antes
contro

Conne
Esta in
Driver.
para la

Statem

iones Cliente S

TIVOS

zar la clase, el• Defi• Iden

RROLLO

I JBDC es un
endiente de l
do con el a
ectivity pero

I consiste e
ma de gestió
tos compati
mación espe
S que cuente

actualidad se
mas populare
InterBase, S
reSql, etc.

sí existe un
das en JDBC
crosoft ODBC
e la totalidad
 tipo.

quete java.s
a de una se
tantes:

r
ta de una cla
strado por el

cargar los co
ar y acceder
o caso esta c

<controlado

de realizar
lador para lo

ection
nterfaz repre
. Nos permite
a ejecución de

ment

Servidor

A

 estudiante ser
inir los diferent
ntificar como se

na interfaz d
a plataforma
acrónimo OD
 oficialmente

n una serie
ón se encarg
ible con el.
ecífica de la
n con un driv

e encuentran
es(e incluso

SyBase... y o

tipo especial
a llamadas e

C por lo que
 de los sistem

ql
eria de clase

ase que impl
l proveedor d
ntroladores d
a recursos d

cadena será d

or>://<serv

la conexión
 que se usa e

esenta una s
e utilizar tran
e instruccion

Cla
Acceso a

con Ja

rá capaz de:
tes medios de C
e establece la C

e acceso a R
a y del gesto
DBC por lo
e, según Java

 de interfac
ga de la tradu
 De esta m
 base de da
ver JDBC con

n drivers JDB
podríamos d
otros produc

 de drivers d
en el estánda
en ultimo te
mas de gesti

es e interfa

lementa el co
de bases de d
de forma din
entro la base
de la forma:

vidor>:<pue

con la base
el método est

esión persist
nsacciones (s
es SQL.

ase Nº 10
 Base de
ava Servl

Conectividad c
Conexión por m

RDBMS (Rel
or de bases
 que se su
soft, JDBC no

ces Java imp
ucción a las
manera el p
atos creando
 solo cambia

BC para todo
ecir existent

ctos de índo

denominados
ar de comun
rmino siempr
ón de bases

ces de las

ontrolador JD
datos. Junto
námica. El co
e de datos co

erto>/<base

e de datos s
tático de la c

tente con la
si el DBMS lo

T

0
 Datos
lets

con Bases de D
medio de ODB

ational Data
de datos uti
uele expresa
o significa na

plementadas
llamadas est
programador
 código que
r tal driver.

os los sistem
es) como Inf

ole no comer

s puentes JD
icación con b
re se podrá u
 de datos cue

cuales pasa

DBC específic
a la clase Dr

ontrolador de
on una sintax

e de datos>

se debe hab
lase Class fo

 base de dat
o admite) así

Tec. En Ingeni

Datos en JAVA
C

base Manage
lizado. Se re
ar como Ja
ada ni es acró

 por un con
tándar que re
r puede abs
 funcionará

mas de gestió
formix, Oracl
rcial como m

DBC-ODBC qu
bases de dat
utilizar uno d
entan con un

aremos a di

co de la base
riverManager
e sirve de un
xis muy parec

>

er cargado e
orName(Stri

tos que es d
í como obten

ería en Sistem

Página 10

A

ement Syste
elaciona muy
ava Databa
ónimo de nad

ntrolador. Es
equiere la ba
straerse de
para todas

ón de bases
le, SQL Serv
mSql, mySql

ue traducen
os desarrolla

de estos drive
n driver de es

scutir las m

e de datos y
 permite carg
na cadena pa
cida a una UR

en memoria
ing).

devuelta por
ner una interf

mas

03.

m)
y a
ase
da.

ste
ase

la
los

de
er,
l y

las
ado
ers
ste

más

 es
gar
ara
RL.

 el

 el
faz

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 104.

Esta interfaz se trata de un vehículo para la ejecución de sentencias SQL a la base de datos y la
extracción de resultados. A este respecto hay que señalar que JDBC acepta el estándar SQL-92
como mínimo exigible por lo que implementaciones nuevas y/o dependientes del DBMS pueden
no estar admitidas.

ResultSet
Representa un conjunto de resultados de forma abstracta(esto es una “tabla”). Dependiendo de
su creación permite acceso secuencial o aleatorio y presenta una serie de métodos para obtener
información de los resultados y para movernos por el conjunto.
Una vez vistas las clases e interfaces para la gestión de consultas JDBC veremos los pasos a
seguir para realizar una consulta a la base de datos. Inicialmente se debe cargar en memoria el
controlador JDBC que vayamos a usar:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Esta sentencia hace que la JVM busque en todas las rutas especificadas por el CLASPATH la clase
correspondiente al driver y la cargue en memoria de tal manera que este lista para posteriores
usos. Seguidamente se debe realizar la conexión con la base de datos:

/*
* Se usa ahora un driver Oracle para acceder a la maquina local y a la
tabla Ejemplo:
*/

String Url = "jdbc:oracle://localhost:8080/Ejemplo";
Connection conn = DriverManager.getConnection(url);

NOTA: También existen versiones de este último método que permiten realizar la conexión con
la BD especificando
un nombre de usuario y una contraseña.

Ahora creamos una sentencia para poder interactuar con la BD mediante el uso de SQL:

Statement stm = conn.createStatement();

Ahora se deberían usar algunos métodos de la interfaz Statement dependientes del tipo de
sentencia SQL que queramos realizar:

/*
* La ejecución de la instrucción SQL devuelve resultados
*/
ResultSet rs = stm.executeQuery("SELECT * FROM Ejemplo");
int numRowsUpdated = stm.executeUpdate("INSERT INTO Ejemplo VALUES
(`Pepe`,`Sánchez`,`45598652`)");

La interfaz ResultSet presenta métodos para obtener un tipo SQL convertido a un tipo Java a
partir del nombre de la columna de la forma getXXX(String nombreColumna) y se desplaza a
través de las filas usando el método bolean.

next()
que desplaza el indicador de posición del ResultSet a la siguiente columna y devuelve un
booleano indicando si hay mas filas(inicialmente se encuentra en la primer fila).Las XXX
representan algún tipo Java como int, String, float, double...obteniéndose métodos como
getInt(string),getString(String),...
Ahora si disponemos de un objeto Resulset podemos usar sus métodos para desplazarnos por el
de la siguiente manera:

while(rs.next())

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 105.

{
System.out.print(rs.getString("Nombre")+ "-");
System.out.println(rs.getFloat("Sueldo"));
}
El método getString es invocado sobre el objeto ResultSet: rs, por eso getString recuperará
(obtendrá) el valor almacenado en la columna Nombre de la fila actual de rs. El valor
recuperado por getString se ha convertido desde un VARCHAR de SQL a un String de Java y
se podría ser asignado a un objeto String s. Observe que como utilizamos la variable s en la
expresión print mostrada arriba, de esta forma:

String s = rs.getString(“Nombre”);
print(s + "- ");

La situación es similar con el método getFloat excepto en que recupera el valor almacenado en
la columna Sueldo, que es un FLOAT de SQL, y lo convierte a un float de Java antes de
asignarlo a la variable n.

float n = rs.getFloat(“Sueldo”);
print(n);

JDBC ofrece dos formas para identificar la columna de la que un método getXXX obtiene un
valor. Una forma es dar el nombre de la columna, como se ha hecho arriba. La segunda forma
es dar el índice de la columna (el número de columna), con un 1 significando la primera
columna, un 2 para la segunda, etc. Si utilizáramos el número de columna en vez del nombre de
columna el código anterior se podría parecer a esto:

String s = rs.getString(1);
float n = rs.getFloat(2);

La primera línea de código obtiene el valor de la primera columna de la fila actual de rs
(columna Nombre), convirtiéndolo a un objeto String de Java y asignándolo a s. La segunda
línea de código obtiene el valor de la segunda columna de la fila actual de rs, lo convierte a un
float de Java y lo asigna a n. Recuerda que el número de columna se refiere al número de
columna en la hoja de resultados no en la tabla original.

En suma, JDBC permite utilizar tanto el nombre cómo el número de la columna como argumento
a un método getXXX. Utilizar el número de columna es un poco más eficiente, y hay algunos
casos donde es necesario utilizarlo.
JDBC permite muchas lateralidades para utilizar los métodos getXXX para obtener diferentes
tipos de datos SQL.
Por ejemplo, el método getInt puede ser utilizado para recuperar cualquier tipo numérico de
caracteres. Los datos recuperados serán convertidos a un int; esto es, si el tipo SQL es
VARCHAR, JDBC intentará convertirlo en un entero. Se recomienda utilizar el método getInt
sólo para recuperar INTEGER de SQL.

Ejemplo.
El siguiente ejemplo muestra primero una página en HTML, que pide al usuario la introducción
de algunos datos.
Estos son enviados a traves de un método http a un servlet llamado Acceso.java que conecta a
la base de datos e introduce los parámetros enviados por el usuario.

Ejemplodeclase8.htm
<HTML>
<HEAD>
<TITLE>Ejemplo de Programación IV</TITLE>
</HEAD>
<BODY>
<H2>Introduzca los siguientes datos:</H2><hr>

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 106.

<FORM ACTION="/servlet/Acceso" METHOD="POST">
Nombre: <INPUT TYPE="TEXT" NAME="nombre" SIZE=15>

Apellidos: <INPUT TYPE="TEXT" NAME="apellidos"
SIZE=30><p>Sueldo:
<INPUT TYPE="TEXT" NAME="sueldo" SIZE=30></p>
<P>
<INPUT TYPE="SUBMIT" NAME="botonEnviar" VALUE="Enviar">
<INPUT TYPE="RESET" NAME="botonLimpiar" VALUE="Limpiar">
</FORM>
</BODY>
</HTML>

Acceso.java
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.sql.*;
public class Acceso extends HttpServlet
{
public void doGet(HttpServletRequest SOLICITUD,
HttpServletResponse RESPUESTA)
throws ServletException, IOException
{
RESPUESTA.setContentType("text/html");
PrintWriter SALIDA = RESPUESTA.getWriter();
/***/
/* GENERACION DEL TITULO Y ENCABEZADO DE LA PANTALLA
/***/
SALIDA.println("<html>");
SALIDA.println("<head> ");
SALIDA.println("<title> Ejemplo de Servlet, Clase #8 </title>");
SALIDA.println(" </head><body>");
// Programa Principal ***
PRINCIPAL(SALIDA,SOLICITUD,RESPUESTA);
SALIDA.println("</body></html>");
SALIDA.flush();
SALIDA.close();
}//Fin del DoGet ***
private void PRINCIPAL(PrintWriter out,HttpServletRequest req,HttpServletResponse resp)
{
// Creando las propiedades necesarias para conectar con la Base de Datos ***
String USUBASE = "";
String PASS = "";
// Inicializando a null las variables a utilizar como elementos de conexión a la BD **
Connection CON1 = null; // Permite establecer la conexión con la BD
Statement STMT1 = null; // Permite indicar un acción sobre la BD
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
CON1 = DriverManager.getConnection("jdbc:odbc:GUIA8", USUBASE, PASS);
STMT1 = CON1.createStatement();
// adquisición de los valores del formulario
String nombre = req.getParameter("nombre");
String apellidos = req.getParameter("apellidos");
String sueldo = req.getParameter("sueldo");
/***/
/* Consulta para verificar si existe en la BD el Usuario actual
/***/
//Realizando la Consulta de Acción ***

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 107.

String Query = "INSERT INTO EJEMPLO VALUES('"+nombre+"','"+apellidos+"',"+sueldo+")";
int NumFilas = STMT1.executeUpdate(Query);
if(NumFilas==1)
{
out.println("Valores recogidos del");
out.println("formulario: <hr>");
out.println("<p>Nombre:"+nombre+"");
out.println("
Apellido: "
+apellidos+"");
out.println("<p>Sueldo: "+
" $"+sueldo+"");
out.println("<hr><p><CENTER><H2>Valores actualizados "+
"con éxito</CENTER>");
}
else
out.println("<P><HR><CENTER><H2>Error: Los Datos NO han sido
actualizados</CENTER>
");
//Cerrando parámetros de Conexión
if (STMT1 != null)
{
STMT1.close();
}
if (CON1 != null)
{
CON1.close();
}
}
catch (Exception ex)
{
out.println("<h3>CONTACTAR A SOPORTE TECNICO...</h3><hr>");
out.println(ex.getMessage());
}
}
// Definición del constructor de la clase ***
public void init(ServletConfig cfg)
throws ServletException
{
super.init(cfg);
}
// Definición del destructor de la clase ***
public void destroy()
{
super.destroy();
}
/** Declaración del la función Post utilizada si las peticiones son enviadas a través del */
/* metodo Post de HTTP
*/
public void doPost(HttpServletRequest SOLICITUD,
HttpServletResponse RESPUESTA)
throws ServletException, IOException
{
doGet(SOLICITUD,RESPUESTA);
}
}// Fin de la clase Acceso ***

Aplicac

OBJET

Al fina•

• • •

PROC

Interf
Una d
conexi
ideal p
como l

Arquite

Este m
del tip
adicion
usuario
como
empre

Manej
Existe
es sab
el erro

El leng
esta gu
una ex
las clas

El térm
siguien
Defini
interru

Captu

El Bloq
El prim
dentro
try gob
excepc

iones Cliente S

TIVOS

lizar la Prácti
Realizar la
fuente de d
Utilizar con
Utilizar las
Lanzar y Ca
Manejo de

EDIMIENTO

faz de Conex
e las tareas
ón a bases d

para hacer la
a mostrada e

ectura cliente

modelo presen
po de operac
nal de que lo
o de la insta
el Servidor d
sariales de ci

jo de Errore
 una regla de
ido. Pero ¿qu
r? ¿Quién lo

guaje Java ut
uía aprender
xcepción una
ses proporcio

mino excepció
nte forma:
ición: Una e
umpe el flujo

rar y Manej

que try
mer paso en
 de la cual se
bierna las sen
ciones (estab

Servidor

Bases

ca, el estudia
conectividad

datos ODBC.
sultas y Subc
excepciones
apturar excep
los “Eventos

xión con el G
 más import
e datos med
s funciones d
en la figura s

e-servidor de

nta la ventaja
ciones que se
os drivers JD
lación de cua
de Base de D
ierta importa

es utilizando
e oro en el m
ué sucede re
maneja?, ¿Pu

tiliza excepc
ás qué es un
 vez capturad
onadas por el

ón es una for

excepción es
 normal de la

jar Excepcio

 la escritura
e puede prod
ntencias ence
lecido por el

Guía Pr
s de Dato
(Uso de

ante será cap
 a una base d

consultas de
en las Clases
pciones por m
 Excepcionale

Gestor de B
tantes y má
iante JDBC. E
de capa med
iguiente.

 3 capas.

a de que el n
e realizan co
BC no tienen
alquier tipo d
Datos puede
ncia esto no

o Excepcione
undo de la pr

ealmente des
uede recuper

ciones para
na excepción,
da, y cómo h
 entorno de d

rma corta da

 un evento
s sentencias.

ones

 de una man
ducir la excep
erradas dentr
 bloque catch

ráctica N
os con Ja
 Excepcio

paz de:
de datos utiliz

 SQL a bases
s de Java Ser
medio de los
es”.

ase de Dato
s frecuentem
Esto es debid
ia en un sist

ivel intermed
ontra la base
n que residir
de driver. En
n estar en la
 suele ocurrir

es
rogramación:
pués de que
rarlo el progra

proporcionar
, cómo lanza
hacer un mej
desarrollo de

 la frase "suc

que ocurre d
.

nejador de e
pción dentro
ro de él y def
h subsecuente

T

o 10
va Servle
ones)

zando el API

 de Datos rel
rvlets.
métodos que

os.
mente realiza
do a que los s
ema con una

dio mantiene
e de datos,
 en la máqu

n cualquier ca
a misma má
r con frecuenc

: en los prog
 ha ocurrido
ama?

r capacidades
r y capturar
or uso de las

e Java.

ceso excepcio

durante la ej

excepciones
 de un bloque
fine el ámbito
e) asociado c

Tec. En Ingeni

ets

 JDBC, o por

acionales.

e proporciona

adas por los
servlets son u
a arquitectura

en todo mom
y además, e
ina cliente, l
aso, tanto el
quina, aunqu
cia.

ramas ocurre
 el error? ¿Có

s de manejo
excepciones,
s excepcione

onal" y puede

jecución del

es poner la
e try. Se dice
o de cualquie
con él.

ería en Sistem

Página 10

 medio de un

 Java para el

 servlets es
un componen
a de tres cap

mento el cont
está la venta
o cual libera
 Servidor HT
ue en sistem

en errores. Es
ómo se mane

 de errores.
, qué hacer c
s heredadas

e definirse de

 programa q

sentencia Ja
e que el bloq
r manejador

mas

08.

a

l

 la
nte
pas

trol
aja
 al

TTP
mas

sto
eja

En
con
 de

e la

que

ava
que
 de

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 109.

Los bloques catch
Después se debe asociar un manejador de excepciones con un bloque try proporcionándole uno
o más bloques catch directamente después del bloque try.

El bloque finally
El bloque finally de Java proporciona un mecanismo que permite a sus métodos limpiarse a si
mismos sin importar lo que sucede dentro del bloque try. Se utiliza el bloque finally para cerrar
ficheros o liberar otros recursos del sistema.

Capturar y Manejar Excepciones
Todos los métodos Java utilizan la sentencia throw para lanzar una excepción. Esta sentencia
requiere un solo argumento, un objeto Throwable. En el sistema Java, los objetos lanzables son
ejemplares de la clase Throwable definida en el paquete java.lang. Aquí tienes un ejemplo de la
sentencia throw:

throw algunObjetoThrowable;

Si se intenta lanzar un objeto que no es 'lanzable', el compilador rehusa la compilación del
programa y muestra un mensaje de error similar a éste:

testing.java:10: Cannot throw class java.lang.Integer; it must be a subclass
of class java.lang.Throwable.
throw new Integer(4);

Introducción a SQL (Structured Query Language)

SQL (Structured Query Language o Lenguaje Estructurado de Consultas) es un lenguaje
empleado para crear, manipular, examinar y manejar bases de datos relacionales. Proporciona
una serie de sentencias estándar que permiten realizar las tareas antes descritas. SQL fue
estandarizado según las normas ANSI (American National Standards Institute) en 1992, paliando
de alguna forma la incompatibilidad de los productos de los distintos fabricantes de bases de
datos (Oracle, Sybase, Microsoft, Informix, etc.). Esto quiere decir que una misma sentencia
permite a priori manipular los datos recogidos en cualquier base de datos que soporte el
estándar ANSI, con independencia del tipo de base de datos.
La mayoría de los programas de base de datos más populares soportan el estándar SQL-92, y
adicionalmente proporcionan extensiones al mismo, aunque éstas ya no están estandarizadas y
son propias de cada fabricante.

JDBC soporta el estándar ANSI SQL-92 y exige que cualquier driver JDBC sea compatible con
dicho estándar.
Para poder enviar sentencias SQL a una base de datos, es preciso que un programa escrito en
Java esté previamente conectado a dicha base de datos, y que haya un objeto Statement
disponible.

REGLAS SINTÁCTICAS

SQL tiene su propia sintaxis que hay que tener en cuenta, pues a veces puede ocurrir que sin
producirse ningún problema en la compilación, al tratar de ejecutar una sentencia se produzca
algún error debido a una incorrecta sintaxis en la sentencia. Por tanto, será necesario seguir las
siguientes normas:
SQL no es sensible a los espacios en blanco1. Los retornos de carro, tabuladores y espacios en
blanco no tienen ningún significado especial. Las palabras clave y comandos están delimitados
por comas (,), y cuando sea necesario, debe emplearse el paréntesis para agruparlos.

Las consultas son insensibles a mayúsculas y minúsculas. Sin embargo, los valores almacenados
en las bases de datos sí que son sensibles a las mismas, por lo que habrá que tener cuidado al
introducir valores, efectuarcomparaciones, etc.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 110.

A la hora de introducir un String, éste deberá ir encerrado entre comillas simples, ya que de lo
contrario se producirán errores en la ejecución.

Ejemplo Práctico Utilizando Conexión a Bases de Datos y Manejo de Excepciones.
El siguiente archivo HTML, llama a la clase servlet “ListaAlumnos.java”, que mostrará un listado
de los alumnos pertenecientes a un grupo especifico elegido por el usuario en el siguiente
formulario.

<!-- fichero Formulario.htm -->
<html>
<head>
<title>Grupos de prácticas</title>
</head>
<body>
<h2 align="center">Escoja el grupo de prácticas cuya lista desea
ver</h2>
<hr>
<p>Grupos de Estudiantes:</p>
<form method="POST" action="/servlet/ListaAlumnos"
name="Formulario">
<p align="center">

<input type="radio" value="SIS11" checked name="GRUPO">SIS11
<input type="radio" name="GRUPO" value="SIS12">SIS12
<input type="radio" name="GRUPO" value="SIS13">SIS13
<input type="radio" name="GRUPO" value="SIS14">SIS14
</p>
</p></center>
<div align="center"><center><p>

<input type="submit" value="Enviar" name="BotonEnviar">
<input type="reset" value="Borrar" name="BotonBorrar">
</p></center></div>
</form>
</body>
</html>

1 Utilice los corchetes para referirse a campos o tablas que están separadas por espacios en
blanco por Ej., [Detalle de pedidos]

// fichero ListaAlumnos.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.sql.*;
import java.util.*;
public class ListaAlumnos extends HttpServlet {
Connection conn = null;
// Vector que contendrá los objetos Alumno
Vector vectorAlumnos=null;
//Método llamada mediante un HTTP POST
public void doPost (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
// se establece el tipo de contenido MIME de la respuesta
resp.setContentType("text/html");
// se obtiene un PrintWriter donde escribir (sólo para mandar texto)
PrintWriter out=resp.getWriter();

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 111.

// Obtención del grupo de prácticas
String grupo = null;
grupo = req.getParameter("GRUPO");
if(grupo==null) {
resp.sendError(500, "Se ha producido un error en la lectura " +
"de la solicitud");
return;
}
out.println("<html>");
out.println("<head>");
out.println("<title>Lista de alumnos del grupo "+grupo+"</title>");
out.println("</head>");
out.println("<body>");
// url de la base de datos
String url=new String("jdbc:odbc:alumnos");
// Carga del Driver
try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
}
catch(ClassNotFoundException ex) {
out.println("Error al cargar el driver");
out.println(ex.getMessage());
}
// Establecimiento de la conexión
try {
conn=DriverManager.getConnection(url,"","");
}
catch (SQLException sqlEx) {
out.println("Se ha producido un error al establecer "+
"la conexión con: "+url);
out.println(sqlEx.getMessage());
}
// Consulta a la base de datos para obtener la lista de alumnos de un grupo
if(obtenerLista(resp,grupo)==0) {
// Mostrar la lista de alumnos mediante una página HTML
mostrarListaAlumnos(resp, grupo);
}
else if(obtenerLista(resp,grupo)==-3) {
resp.sendError(500, "No se ha encontrado el grupo: " +grupo);
}
else
resp.sendError(500, "Se ha producido un error en el acceso " +
"a la base de datos");
} // fin del método doPost()
public int obtenerLista(HttpServletResponse resp,String grupo)
throws ServletException, IOException {
// se obtiene un PrintWriter donde escribir (sólo para mandar texto)
PrintWriter out=resp.getWriter();
Statement stmt = null;
ResultSet rs = null;
String query = "SELECT DISTINCT Carnet, " +
"Nombre, "+
"Apellidos, "+
"GrupoPractica "+
"FROM TablaAlumnos WHERE GrupoPractica='"+grupo+"'";
// Ejecución del query
try {
stmt=conn.createStatement();
rs=stmt.executeQuery(query);

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 112.

vectorAlumnos=new Vector();
// Lectura del ResultSet
// En Java2
while (rs.next()) {
Alumno temp=new Alumno();
temp.setNombre(rs.getString("Nombre"));
temp.setApellidos(rs.getString("Apellidos"));
temp.setCarnet(rs.getLong("Carnet"));
vectorAlumnos.addElement(temp);
}
if(vectorAlumnos.size()==0)
return -3;
return 0;
}
catch (SQLException sql) {
out.println("Se produjo un error al crear el Statement");
out.println(sql.getMessage());
return -1;
} finally {
// se cierra el Statment
if(stmt!=null) {
try {
stmt.close();
}
catch(SQLException e) {
out.println("Error al cerrar el Statement");
out.println(e.getMessage());
return -2;
}
}
// se cierra el Connection
if(conn!=null) {
try {
conn.close();
}
catch(SQLException e) {
out.println("Error al cerrar el Statement");
out.println(e.getMessage());
return -2;
}
}
} // fin del finally
} // fin del método obtenerLista()
public void mostrarListaAlumnos(HttpServletResponse resp, String grupo)
throws ServletException, IOException {
// se obtiene un PrintWriter donde escribir (sólo para mandar texto)
PrintWriter out=resp.getWriter();
// se manda la lista
out.println("<H2 align=\"center\">Lista de alumnos del grupo "+
grupo+"</H2><hr><p>");
out.println("<div align=\"center\"><center>");
out.println("");
out.println("<table border=\"1\" width=\"70%\">");
out.println("<tr>");
out.println("<th width=\"25%\" bgcolor=\"#808080\">"+
"Carnet</td>");
out.println("<th width=\"25%\" bgcolor=\"#808080\">"+
"Nombre</td>");
out.println("<th width=\"25%\" bgcolor=\"#808080\">"+

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 113.

"Apellidos</td>");
out.println("</tr>");
// Datos del Alumno por filas
Alumno alum=null;
for (int i=0; i<vectorAlumnos.size();i++) {
alum=(Alumno)vectorAlumnos.elementAt(i);
out.println("<tr>");
out.println("<td width=\"25%\">"+alum.getCarnet()+"</td>");
out.println("<td width=\"25%\">"+alum.getNombre()+"</td>");
out.println("<td width=\"25%\">"+alum.getApellidos()+"</td>");
out.println("</tr>");
}
out.println("</table>");
out.println("</center></div>");
out.println("</body>");
out.println("</html>");
// se fuerza la descarga del buffer y se cierra el PrintWriter
out.flush();
out.close();
} // fin del método mostrarListaAlumnos()
} // fin de la clase ListaAlumnos

Puede observarse que este servlet efectúa la conexión con la base de datos cuyo DSN es
alumnos, y comprueba que la conexión se ha realizado con éxito.

La petición del cliente es de tipo HTTP POST, por lo que se ha redefinido el método doPost(). En
este se lee el parámetro GRUPO. En caso de que haya algún problema en la lectura de dicho
parámetro, lanza un mensaje de error.

Una vez que se sabe cuál es el grupo cuya lista quiere visualizar el cliente, se llama al método
obtenerLista, que tiene como uno de sus parámetros precisamente el nombre del grupo a
mostrar. En este método se realiza la consulta con la base de datos, mediante el método
executeQuery() de la interface Statement.

En este ejemplo, además, al leer los valores de la base de datos, estos son almacenados en un
Vector de objetos de la clase Alumno2, que ha sido creada para este ejemplo, y cuyo código
puede observarse a continuación.

public class Alumno {
// Definición de variables miembro
private String nombre;
private String apellidos;
private long carnet;
private String grupoPractica;
// Métodos para establecer los datos
public void setNombre(String nom) { nombre=nom; }
public void setApellidos(String apel) { apellidos=apel; }
public void setCarnet(long carn) { carnet=carn; }
public void setGrupoPractica(String grupo) { grupoPractica=grupo; }
// Métodos de recuperación de datos
public String getNombre() { return nombre; }
public String getApellidos() { return apellidos; }
public long getCarnet() { return carnet; }
public String getGrupoPractica() { return grupoPractica; }
} // fin de la clase Alumno

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 114.

EJERCICIOS PROPUESTOS.

1. Crear una interfaz de usuario, utilizando un formulario de HTML, que pida el id de empleado,
nombre o Apellido, de tal forma que realice una búsqueda por cualquiera de esos parámetros y
muestre la información del empleado o los empleados que coincidan con los parámetros de
búsqueda.

2. Crear una interfaz de Usuario, para la búsqueda de productos por categoría (ya sea por Id o
por nombre) por medio de un formulario, el servlet de java mostrará el nombre de la categoría
seleccionada y el listado de productos (id de producto, Nombre del producto, Nombre del
Proveedor, Precio Unitario y Existencia).

3. Crear un formulario que pida un Id de Cliente, y que llame a un servlet que muestre la
información del cliente (Nombre de la compañía, Nombre del contacto, Cargo del contacto,
Dirección, Teléfono, Fax), y además muestre a parte los Id de Pedidos que ha realizado y la
fecha en que los realizó, el id de producto deberá ser un link a otro servlet, que mostrará la
información del Pedido realizado por el Cliente (id de pedido, fecha de pedido, la Fecha de
entrega) y el detalle de los productos que contiene el pedido, realizando el calculo del total a
pagar por el cliente (tomando en cuenta los descuentos).

Aplicac

OBJET

Al fina•

DESAR

Equiva
Aunqu
petició
podrían
HttpSe
Variab

iones Cliente S

TIVOS

lizar, el estud
Definir conc

RROLLO

alentes Serv
e probablem
n, datos de
n encontra
ervletReque
ble CGI Sign

Servidor

Util

diante será ca
ceptos sobre

vlet a la Var
mente tiene m
 servidor, et
r muy út
est suministr
nificado Acce

Clase T
lidades p

JAVA

apaz de:
 la Tecnología

riables Están
más sentido
tc.) como dis
il la sigui

rado a los mé
eso desde d

Teórica N
para prog
A Servlet

a de Internet

ndar CGI
 pensar en
stintas, los p
iente tabla
étodos doGet
doGet o doP

T

º 11
ramar en
ts

t

diferentes fu
programador
. Asumimo
t y doPost.
ost

Tec. En Ingeni

n

uentes de da
res experime
s que req

ería en Sistem

Página 11

atos (datos
ntados en C
quest es

mas

15.

de
CGI

el

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 116.

Ejemplo: Leer las Variables CGI
Aquí tenemos un servlet que crea una tabla que muestra los valores de todas las variables CGI
distintas a HTTP_XXX_YYY, que son sólo cabeceras de petición HTTP que se mostraron en la
página anterior.

MostrarCGIVariables.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
/** Este servlet crea una tabla que muestra los valores de las variable CGI
*/
public class MostrarCGIVariables extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
//Declaración de una matriz para el almacenamiento de las variables CGI
String[][] variables = { { "AUTH_TYPE", request.getAuthType() },
{ "CONTENT_LENGTH", String.valueOf(request.getContentLength()) },
{ "CONTENT_TYPE", request.getContentType() },
{ "DOCUMENT_ROOT", getServletContext().getRealPath("/") },
{ "PATH_INFO", request.getPathInfo() },
{ "PATH_TRANSLATED", request.getPathTranslated() },
{ "QUERY_STRING", request.getQueryString() },
{ "REMOTE_ADDR", request.getRemoteAddr() },
{ "REMOTE_HOST", request.getRemoteHost() },
{ "REMOTE_USER", request.getRemoteUser() },
{ "REQUEST_METHOD", request.getMethod() },
{ "SCRIPT_NAME", request.getServletPath() },
{ "SERVER_NAME", request.getServerName() },
{ "SERVER_PORT", String.valueOf(request.getServerPort()) },
{ "SERVER_PROTOCOL", request.getProtocol() },
{ "SERVER_SOFTWARE", getServletContext().getServerInfo() }
};
String title = "Servlet de Ejemplo: Mostrar Variables CGI ";
out.println(Utilidad.headConTitle(title) +

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 117.

"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</H1><hr><p>\n" +
"<TABLE BORDER=1 ALIGN=CENTER>\n" +
"<TR BGCOLOR=\"#FFAD00\">\n" +
"<TH>Nombre de Variable CGI<TH>Valor");
for(int i=0; i<variables.length; i++) {
String varName = variables[i][0];
String varValue = variables[i][1];
if (varValue == null)
varValue = "<I>No Especificado </I>";
out.println("<TR><TD>" + varName + "<TD>" + varValue);
}
out.println("</TABLE></BODY></HTML>");
}
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet(request, response);
}
}

EL MÉTODO valueOf()
Como es conveniente, la clase String proporciona un método estático valueOf(). Se puede
utilizar este método para convertir variables de diferentes tipos a un String. Por ejemplo, para
imprimir el número pi:

System.out.println(String.valueOf(Math.PI));

Convertir Cadenas a Números

La clase String no proporciona ningún método para convertir una cadena en un número. Sin
embargo, cuatro clases de los "tipos envolventes" (Integer, Double, Float, y Long) proporcionan
unos métodos de clase llamados valueOf() que convierten una cadena en un objeto de ese tipo.
Aquí tenemos un pequeño ejemplo del método valueOf() de la clase Float:

String piStr = "3.14159";
Float pi = Float.valueOf(piStr);
Métodos Accesores

FraseInversa.java
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
/** Este servlet crea una tabla que muestra una frase a la Inversa
*/
public class FraseInversa extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String title = "Servlet de Ejemplo #2: Uso de toString";
out.println(Utilidad.headConTitle(title) +
"<BODY BGCOLOR=\"#FDF5E6\">\n" +
"<H1 ALIGN=CENTER>" + title + "</H1><hr><p>\n" +
"<TABLE BORDER=1 width=75% ALIGN=CENTER>\n" +
"<TR bgcolor= >\n");
String Fuente= "ESTA ES LA FRASE DE PRUEBA";

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 118.

out.println("<td>La frase a la Original es: "+ Fuente);
int i, len = Fuente.length();
StringBuffer destino = new StringBuffer(len);
for (i = (len - 1); i >= 0; i--)
{
destino.append(Fuente.charAt(i));
}
out.println("<tr><td>La frase a la inversa es: "+ destino.toString());
out.println("</TABLE></BODY></HTML>");
}
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
doGet(request, response);
}
}

Los métodos utilizados para obtener información de un objeto son conocidos como métodos
accesores. La clase FraseInversa utiliza dos métodos accesores de String para obtener
información sobre el string Fuente.

Primero utiliza el método accesor: length() para obtener la longitud de la cadena Fuente.

int len = Fuente.length();

Segundo, utiliza el método accesor: charAt() que devuelve el carácter que está situado en la
posición indicada en su argumento.

Fuente.charAt(i)

El carácter devuelto por charAt() es el que se añade al StringBuffer destino. Como la variable
del bucle i empieza al final de Fuente y avanza hasta el principio de la cadena, los caracteres se
añaden en orden inverso al StringBuffer. El método toString() convierte un objeto de otro tipo,
en este caso stringbuffer a un String.

METODOS DE HTTPSERLVETREQUEST Y HTTPSERVLETRESPONSE
los métodos de clase HttpServlet que puede redefinir el programador reciben como argumentos
un objeto HttpServletRequest y otro HttpServletResponse. La interface HttpServletRequest
proporciona métodos para obtener información acerca de la petición del cliente, por otro lado, el
objeto de la interface HttpServletResponse permite enviar desde el servlet al cliente información
acerca del estado del servidor así como establecer los valores del header del mensaje saliente,
en las siguientes tablas teneis los métodos más útiles de estas dos clases, también se añaden
los métodos de la clase ServletConfig del método init.

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 119.

GRAFICOS DE BARRAS UTILIZANDO APPLETS.

El grafico anterior se crea a partir de un applet de java (Barchar2.class) Cuyos parámetros son:

<applet code base =”DirectorioVirtual” code="Barchart2.class" width=273
height=197 align="left">
<!- ESTOS SON LOS PARAMETROS GLOBALES PARA EL GRAFICO >
<param name=title value="Aquí va el Titulo del Grafico"> <!- Titulo del grafico>
<param name=columns value=" n "> <!- numero de Barras en el Grafico>
<param name=orientation value="vertical"> <!- orientación horizontal o vertical>
<param name=printval value="yes"> <!- deseas imprimir los valores de cada barra>
<param name=bgcolor value="f0c0a0"> <!- color en RGB para el contorno del applet>
<param name=insetcolor value="ffffe0"> <!- color en RGB para el fondo del grafico de
barras>
<!- ESTOS PARAMETROS DEFINEN CADA UNA DE LAS BARRAS EN EL GRAFICO >
<param name=c1_style value="striped">

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 120.

<param name=c1 value="100">
<param name=c1_color value="blue">
<param name=c1_label value="Q1">
…
…
<param name=cn value="30">
<param name=cn_color value="darkGray">
<param name=cn_label value="Qn">
<param name=cn_style value="solid">
</applet>

DESCRIPCIÓN DE LOS PARAMETROS
El grafico puede ser orientado Horizontal o verticalmente usando name=orientation value=, y
puede escoger “striped”(rayado) o “solid” (sólido) para cada una de las barras usando cn_style
= para la enésima barra.

El ancho de las barras es uniforme, de acuerdo a la escala y al tamaño de la etiqueta. El
parámetro "printval" (imprimir valor) ya sea "yes" or "no", y los valores de las barras son
escritas al lado de ellas.

Utilice las variables del tag applet, height (altura) y width (ancho) para obtener la dimensión
correcta para el grafico (esta puede variar de acuerdo a la orientación que le des al mismo).

Los valores para las barras pueden ser números enteros o reales. Si utiliza notación científica u
el exponente utiliza el siguiente formato: 1.546e78, no funcionará, pero si lo escribes
1.546e+78 si lo hará.

El color del fondo del marco del grafico se escoge con el parámetro "bgcolor" y se escribe en 6
dígitos con el formato RGB. Para el caso de los gráficos Verticales, (orientación = "vertical") un
segundo color es definido para el rectángulo dentro del grafico también en formato RGB con el
parámetro "insetcolor" (el formato de grafico horizontal no utiliza esta definición del segundo
color)

Puede escoger entre los siguientes colores permitidos para las barras: red, green, darkGreen,
beige, blue, pink, magenta, cyan, white, yellow, gray, and darkGray. Si escoge otro color se
imprimira el color por defecto que es el Blue (Azul). Cualquier color puede ser definido para el
fondo del grafico y el rectángulo interior, pero no con todas las combinaciones el grafico será
legible. Note que los colores de las barras son definidos por el nombre del color opuesto a los
colores del fondo y el rectángulo interior del grafico que se especifican en formato RGB.

Aplicac

OBJET

Al fina
 • •

• •

PROC

Utiliza
En tus
partir d
siguien

1. Obte
sus arc
deberá
adelan

2. inse
figura
HTML n
grafico

iones Cliente S

TIVOS

lizar la prácti

Utilizar clas
Crear Serv
gráficos deb
Conocer los
Recuperar
mostrar el g

EDIMIENTO

ando gráfico
 Paginas HTM
de una tabla
nte figura:

ener el códig
chivos HTML
ás agregar la
te

erte en su arc
del grafico an
normal. Dond
o y los siguien

Servidor

Gráfi

ca, el estudia

ses de java q
lets de Java
barras.
s parámetros
información
grafico respe

os de barras
ML puedes uti
 de resultado

o binario del
(si tienes el a
 ruta a la esp

chivo HTML u
nterior fue cr
de los primer
ntes grupos d

Guía Pr
cos en A

ante será cap

ue han sido c
 que genere

 que utiliza e
almacenada

ectivo en pant

s en tus pág
ilizar applet3
s, lo que se v

 archivo Barc
archivo en un
pecificación d

n tag de app
reado por el s
ros 6 grupos d
de 4 líneas re

ráctica N
plicacion

paz de:

creadas para
n paginas HT

el applet para
 en bases d
talla.

inas.
 de Java para
visualiza en p

chart2.clas4
n directorio d
el código bas

let con los pa
siguiente cód
de líneas esp

epresentan ca

T

° 11
nes de Jav

 la elaboració
TML que util

a la generació
de datos, m

a la generació
pantalla pued

4s y guardarl
diferente al ar
se del applet

arámetros ap
igo de applet

pecifican los p
ada parámetr

Tec. En Ingeni

va

ón de graficas
lizan el apple

ón de graficas
ostrarla tabl

ón de grafica
de ser algo pa

lo en el mism
rchivo HTML
tag (como po

propiados. Po
t insertado en
parámetros g
ro que deberá

ería en Sistem

Página 12

s de barras.
et para dibuj

s de barra.
as de HTML

s de barras a
arecido a la

mo directorio
que lo invoca
odrás ver má

r ejemplo, la
n un archivo
lobales del
á ser un dato

mas

21.

jar

L y

a

de
a,
ás

o

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 122.

en el grafico de barras (el parámetro “columns” especifica el numero número de barras que
dibuja el grafico):

<!- AQUI SE DECLARA EL TAG DEL APPLET >
<applet code="Barchart2.class" width=273 height=197 align="left">
<!- ESTOS SON LOS PARAMETROS GLOBALES PARA EL GRAFICO >
<param name=title value="Grafico de Barras de Ejemplo"> <!- Titulo del grafico>
<param name=columns value="4"> <!- numero de Barras en el Grafico>
<param name=orientation value="vertical"> <!- orientación horizontal o vertical>
<param name=printval value="yes"> <!- deseas imprimir los valores de cada barra>
<param name=bgcolor value="f0c0a0"> <!- color en RGB para el contorno del applet>
<param name=insetcolor value="ffffe0"> <!- color en RGB para el fondo del grafico de
barras>
<!- ESTOS PARAMETROS DEFINEN CADA UNA DE LAS BARRAS EN EL GRAFICO >
<param name=c1_style value="striped">
<param name=c1 value="100">
<param name=c1_color value="blue">
<param name=c1_label value="Q1">
<param name=c2_color value="red">
<param name=c2_label value="Q2">
<param name=c2 value="20">
<param name=c2_style value="solid">
<param name=c3 value="85">
<param name=c3_style value="striped">
<param name=c3_color value="magenta">
<param name=c3_label value="Q3">
<param name=c4 value="30">
<param name=c4_color value="darkGray">
<param name=c4_label value="Q4">
<param name=c4_style value="solid">
</applet>

EL CODIGO COMPLETO DEL EJEMPLO DE LA FIGURA ANTERIOR ES ESTE:
<html>
<head> <title>Ejemplo de Grafico de Barras</title> </head>
<body bgcolor="#ffffff">
<h1 align="center">Ejemplo de un Applet para la Generación de
Gráficos de Barra.</h1>
<hr>
<p>
<center>
<table border="0" cellpadding="0" cellspacing="0" style="border-collapse: collapse"
bordercolor="#111111"
width="100%" id="AutoNumber1">
<tr>
<td width="50%">
<applet code="Barchart2.class" width=273 height=197 align="left">
<param name=title value="Grafico de Barras de Ejemplo"> <!- Titulo del grafico>
<param name=columns value="4"> <!- numero de Barras en el Grafico>
<param name=orientation value="vertical"> <!- orientación horizontal o vertical>
<param name=printval value="yes"> <!- deseas imprimir los valores de cada barra>
<param name=bgcolor value="f0c0a0"> <!- color en RGB para el contorno del applet>
<param name=insetcolor value="ffffe0"> <!- color en RGB para el fondo del grafico de barras>
<param name=c1_style value="striped">
<param name=c1 value="100">
<param name=c1_color value="blue">
<param name=c1_label value="Q1">
<param name=c2_color value="red">
<param name=c2_label value="Q2">

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 123.

<param name=c2 value="20">
<param name=c2_style value="solid">
<param name=c3 value="85">
<param name=c3_style value="striped">
<param name=c3_color value="magenta">
<param name=c3_label value="Q3">
<param name=c4 value="30">
<param name=c4_color value="darkGray">
<param name=c4_label value="Q4">
<param name=c4_style value="solid">
<center>
</center>
</applet></td>
<td width="50%">
<center>
<table width="208" border="1" cellpadding="0" cellspacing="0">
<tr>
<th width="94" bgcolor="#800000">DATO</th>
<th width="104" bgcolor="#800000"><font
color="#FFFFFF">CANTIDAD</th>
</tr>
<tr>
<td width="94" align="center">Q1</td>
<td width="104" align="center">100</td>
</tr>
<tr>
<td width="94" align="center">Q2</td>
<td width="104" align="center">20</td>
</tr>
<tr>
<td width="94" align="center">Q3</td>
<td width="104" align="center">85</td>
</tr>
<tr>
<td width="94" align="center">Q4</td>
<td width="104" align="center">30</td>
</tr>
</table>
</center>
</div>
</table>
</center>
</body>
</html>

GRAFICAS DE BARRAS UTILIZANDO SERVLETS DE JAVA PARA LA GENERACIÓN DEL
CODIGO HTML.

En el siguiente servlet EjemploGuia12.java se llenan 2 vectores, cuyos valores son mostrados
en una tabla en el navegador, si observas cuando se declara el applet en el servlet debemos
decir donde se encuentra la clase Barchar2, en este caso se asume que el applet se encuentra
en el directorio virtual “Ejemplo” (vea la línea en negrita en el código siguiente.)

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class EjemploGuia12 extends HttpServlet {
public void service(HttpServletRequest request,
HttpServletResponse response)

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 124.

throws ServletException, IOException
{
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String Sucursales[] = {"SANTA ANA","SANTA TECLA","SAN SALVADOR","SAN MIGUEL"};
int CantidadVenta[] = {250,500,585,175};
out.println("<HTML>\n" +
"<HEAD><TITLE>>Ejercicio de Programación IV GUIA #12</TITLE></HEAD>\n" +
"<BODY>\n" +
"<CENTER><H1>Almacen \"El Baratio\"</H1></CENTER>\n"+
"<CENTER><H3>Cantidad de Bibicletas vendidas en el Año 2001 Por
Sucursales</H3></CENTER><hr>\n"+
"<center><table width=50% border=1 cellspacing=0 cellpadding=0>\n"+
"<tr bgcolor=blue><th>SUCURSAL</th><th><font
color=white>CANTIDAD</th>\n");
for (int i=0; i< Sucursales.length; i++)
{
out.println("<tr><td>"+Sucursales[i]+
"<td>"+CantidadVenta[i]);
}
out.println("</table></center><p>");
int totalbarras = Sucursales.length;
out.println("<center>");
out.println("<applet codebase=\"/ejemplos\" code=\"Barchart2.class\" width=450
height=310>");
out.println("<param name=title value=\"Ventas realizadas durante el año 2001\">");
out.println("<param name=columns value=\""+totalbarras+"\">");
out.println("<param name=orientation value=\"vertical\">");
out.println("<param name=printval value=\"no\"> ");
out.println("<param name=bgcolor value=\"dddddd\">");
out.println("<param name=insetcolor value=\"ffc0a0\">");
for (int i=0; i< Sucursales.length; i++)
{
int cont=i+1;
out.println("<param name=c"+cont+"_label value=\""+Sucursales[i]+"\">");
out.println("<param name=c"+cont+" value=\""+CantidadVenta[i]+"\">");
out.println("<param name=c"+cont+"_style value=\"striped\">");
out.println("<param name=c"+cont+"_color value=\"red\">");
}
out.println("</applet>");
out.println("</center>");
out.println("</BODY></HTML>");
}
}

 Tec. En Ingeniería en Sistemas

Aplicaciones Cliente Servidor Página 125.

EJERCICIOS

1. Crear una Pagina HTML que muestre la siguiente tabla de resultados, con su grafica
respectiva:

2. Crear un servlet de java, que muestre el contenido de 2 vectores, en los cuales se encuentran
almacenados el número de alumnos inscritos por año desde 1995 hasta el 2002 en el ITCA.
Además de mostrar la tabla de resultados hacer un link para mostrar el grafico en la misma
pagina.

3. Utilizando la base de datos Neptuno, (cuya conexión ODBC deberá llamarse también Neptuno)
Crear un servlet de java, que muestre Cada una de las Categorías de productos que existen en
la base de datos con el número total de productos que pertenecen a cada categoría. El servlet
deberá mostrar la tabla de resultado y el grafico generado a través de applet

Aplicac

Libros• • •

Sitos W
 • • • • •

iones Cliente S

s
Como Progr
Piensa en J
Java Servle
Krishnaswa

Web

www.progra
www.verex
http://dalila
http://www
http://www

Servidor

ramar en JAV
AVA-2ª Edici

et Programmi
any and Sridh

amacion.com
tremadura.co
a.sip.ucm.es/

w.aulambra.co
w.programacio

Bib

VA (Deitel y D
on (Bruce Ec
ng Bible (Sur

har Vijendran

m/java/cursos
om/miguel/js
/miembros/o
om/javascrip
on.com/html

bliografía

Deitel)Prentic
ckel)Prentice
resh Rajagop
) Hungry Min

s.htm
sp/JavaServe
lga/javas.htm

pt.asp
/dinamico/tu

T

a

ce Hall
Hall

palan, Rames
nds

erPages.pdf
ml

utorial/indice

Tec. En Ingeni

h Rajamani,

e.htm

ería en Sistem

Página 12

Ramesh

mas

26.

Primera Edición
Manual de

Aplicaciones Cliente Servidor

ITCA – FEPADE  2010

